
 

 

Module3 

Laue diffraction, Laue equation, Ewald’s sphere construction 

 

Learning objectives 

 Introduction 

 Laue Diffraction 

 Laue equations 

 Bragg’s Law from Laue equation 

 Ewald’s Sphere 

 

 

3.1. Introduction 

Laue used flat-plate film for recording the diffraction pattern of a stationary crystal when 

unfiltered X-rays are incident. In the Laue methods the Bragg equation is satisfied by effectively varying 

λ, utilizing the beam of continuous radiation. The crystal acts as a filter, selecting the correct wavelength 

for each reflection according to the equation 2dhkl sinθhkl = λ. From the Laue photographs, symmetries can 

be observed.  Laue derived three equations as necessary conditions for producing diffraction pattern and 

Bragg’s law can be derived from these equations. 

 

3.2. Laue Diffraction 

In 1912, von Laue took the diffraction pattern (Fig 3.1) when a still crystal is incident with a 

beam of continuous X-rays (unfiltered). The film used was a flat-plate one. The Laue photograph contains 

ellipses of varying intensities and the ellipses have one end of their major axis at the centre of the 

photographic film (Fig 3.2). The spots in each ellipse are due to reflections from planes that lie in one and 

the same zone. Fig 3.3 shows a zone axis Z’ for a given Bragg angle θ. R can be considered as a reflected 

ray and if one imagines the rotation of the crystal about zone axis ZZ’, taking the reflected beam with it 

we can simulate the effect of the zone. Now the rays like R generate a cone, co-axial with ZZ’ with a semi 

vertical angle θ. Eventually, when a circle cuts a plane, the shape will be an ellipse and this is the reason 

why a general appearance of the spots of the Laue photographs are of ellipse in shape (refer Fig 3.2). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Since synchrotron uses a wide range of wavelengths, it is ideally suited to the Laue method of recording 

diffraction pattern. 

 

 

 



 

 

3.3. Laue equations 

Consider X-ray scattering by two atoms, one O and the other at A (Fig 3.4). O  is considered as 

origin of the crystal lattice and the scattering of X-rays by O is affected by those scattered by atom ‘A’ 

whose coordinates with respect to O are at pa1, qa2, ra3,  where p, q and r are integers. Thus  

 

 

 

 

 

 

 

 

Fig 3.4 

                                                        OA = pa1 + qa2+ra3                                                (3.1) 

Where a1, a2 and a3 are the vectors defining the unit cell of the crystal lattice. 

Assume 𝜆 is the wavelength of X-rays and let  𝑺𝒐 and 𝑺 be the unit vectors that represent the 

incident and diffracted beams, respectively.   𝑺𝒐 , 𝑺 and OA in general are not coplanar. 

We are now interested in the conditions under which diffraction will occur. For this, one has to 

determine the phase difference between the rays scattered by the atom O and A. Ou and Ov are wave 

fronts perpendicular to the incident beam and the scattered beam, respectively. Let 𝛿 be the path 

difference of the rays scattered by O and A.   Let 

                     𝛿 = 𝑢𝐴 + 𝐴𝑣 = 𝑂𝑚 + 𝑂𝑛 = 𝑺𝒐 . 𝑶𝑨 + (−𝑺). 𝑶𝑨 = −𝑶𝑨. (𝑺 − 𝑺𝒐)        (3.2) 

Path difference of λ corresponds to a phase difference of 2π radians and hence the corresponding 

phase difference 𝜙, in radians for the above path difference 𝛿 , is given by 

                                         𝜙 =
2𝜋𝛿

𝜆
= −2𝜋(

𝑺− 𝑺𝟎

𝜆
) . 𝑶𝑨                                            (3.3) 



 

 

Diffraction is now related to the reciprocal lattice by expressing the vector (𝑺 − 𝑺𝒐/𝜆) as a vector in that 

lattice. Let  

                                                               (
𝑺−𝑺𝒐

𝜆
) = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑                                 (3.4) 

Where b1, b2 and b3 are the unit cell translations of the reciprocal lattice  

The above equation is now in the form of a vector in the reciprocal space but, at this point, no particular 

significance is attached to the parameters ℎ, 𝑘 𝑎𝑛𝑑 𝑙 . They are continuous variables and may assume any 

values, integral or nonintegral. Substituting equation (3.1) (for OA) and equation (3.4) [for (
𝑺−𝑺𝒐

𝜆
) ],  

equation (3.3) now becomes 

𝝓 = −𝟐𝝅(ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑). (𝑝𝒂𝟏 + 𝑞𝒂𝟐 + 𝑟𝒂𝟑) = −2𝜋(ℎ𝑝 + 𝑘𝑞 + 𝑙𝑟)                      (3.5) 

A diffracted beam will be found only if reinforcement occurs, and this requires that 𝜙 be an integral 

multiple of 2𝜋, meaning that ℎ𝑝 + 𝑘𝑞 + 𝑙𝑟 should be an integer for obtaining a diffracted beam. This can 

happen only if ℎ, 𝑘 𝑎𝑛𝑑 𝑙 are the integers as already p, q and r are integers. Therefore the condition for 

diffraction is that the vector (𝑺 − 𝑺𝒐)/𝝀 ends on a point in the reciprocal lattice or that  

                                                   ( 𝑺 − 𝑺𝒐)/𝜆 = 𝑯 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑                               (3.6) 

Where ℎ, 𝑘 𝑎𝑛𝑑 𝑙 are now restricted to integral values. 

Both the Laue equations and Bragg’s law can be derived from the above equation. Laue equations 

are obtained by forming the dot product of each side of the equation and the three crystal-lattice vectors 

𝒂𝟏, 𝒂𝟐,  𝒂𝟑 succesively. For example, 

                                                        𝒂𝟏. (𝑺 − 𝑺𝟎/𝜆) = 𝒂𝟏. (ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑)   

= ℎ 

 

Thus,  

                                                 𝒂𝟏. (𝑺 − 𝑺𝒐) = ℎ𝜆                                                               (3.7) 

Similarly 

                                                  𝒂𝟐. (𝑺 − 𝑺𝒐) = 𝑘𝜆                                                               (3.8) 



 

 

                                                  𝒂𝟑. (𝑺 − 𝑺𝒐) = 𝑙𝜆                                                                (3.9) 

 

The above equations (3.7 – 3.9) are the vector forms of the equations derived by von Laue in 1912 to 

express the necessary conditions for diffraction. And these three equations are called Laue Equations. 

All the three Laue equations must be satisfied simultaneously for the diffraction to occur. 

3.4. Bragg’s Law from Laue equation 

As shown in the above Fig 3.4, the vector (𝑺 − 𝑺𝒐) bisects the incident beam 𝑺𝒐 and the 

diffracted beam S. The diffracted beam S can therefore be considered as being reflected from a set of 

planes perpendicular to   (𝑺 − 𝑺𝒐) . In fact equation (3.6) states that (𝑺 − 𝑺𝒐) is parallel to H, which is in 

turn perpendicular to the planes (hkl). Let 𝜃 be the angle between 𝑺 (𝑜𝑟 𝑺𝟎) and these planes. Then, since 

𝑺 𝑎𝑛𝑑 𝑺𝒐 are unit vectors, 

(𝑺 − 𝑺𝒐) = 2𝑠𝑖𝑛𝜃 

Therefore  

2𝑠𝑖𝑛𝜃

𝜆
= (𝑺 − 𝑺𝒐)/𝜆 = 𝑯 = 1/𝑑 

                                                                             2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆                                  (3.10) 

 

3.5. Ewald’s Sphere 

 

 

 

 

 

 

 

Fig 3.5 



 

 

The conditions for diffraction expressed by equation (3.6) may be graphically represented by the 

“Ewald construction” as shown in Fig 3.5. The vector 𝑺𝒐/𝜆 is drawn parallel to the incident beam and 

1/𝜆 in length. The terminal point 𝑶 of this vector is taken as the origin of the reciprocal lattice, drawn to 

the same scale as the vector 𝑺𝒐/𝜆 . A sphere of radius 1/𝜆 is drawn about 𝐶, the initial point of the 

incident-beam vector. Then the condition for diffraction from the (ℎ𝑘𝑙) planes is that the point ℎ𝑘𝑙 in the 

reciprocal lattice (point 𝑃)  touches the surface of the sphere, and the direction of the diffracted beam 

vector 𝑺/𝜆 is found by joining 𝐶 𝑡𝑜 𝑃. When this condition is fulfilled, the vector OP equals both 𝑯𝒉𝒌𝒍 

and (𝑺 − 𝑺𝒐)/𝜆, thus satisfying equation (3.6). Since diffraction depends on a reciprocal-lattice point 

touching the surface of the sphere drawn about C, this sphere is known as the “sphere of reflection”. 

The common methods of X-ray diffraction are differentiated by the methods used for bringing 

reciprocal-lattice points into contact with the surface of the sphere of reflection. The radius of the sphere 

may be varied by varying the incident wavelength (Laue method), or the position of the reciprocal lattice 

may be varied by changes in the orientation of the crystal (rotating crystal and powder diffraction). 

Summary 

Bragg’s law can be verified either from considering the three Laue’s equations and determining the 

intersection points of the three cones or by using Ewalds sphere construction, confirming that a reciprocal 

lattice point cutting the sphere of reflection will obey Bragg’s law. 

 

 

 

 


