Module 23: Groups, Rings and Fields

- Groups, Rings, Fields are Fundamental elements of abstract algebra.
- Combine two elements of set, to obtain a third element of set.

Groups:

- A group G, denoted by $[G, \bullet]$
- Set of elements with a binary operation denoted by that associates to each ordered pair (a,b) of elements in G, an element (a \bullet b) in G, such that following axioms are obeyed.
- (A1) Closure: If a and b belong to G, then a b is also in G.
- (A2) Associative : $a \bullet (b \bullet c) = (a \bullet b) \bullet c$ for all a,b,c in G.
- (A3) Identity element: element e in G such that $a \bullet e = e \bullet a = a$ for all a in G
- (A4) Inverse Element : For each a in G, there is an element a' in G such that a \bullet a'= a' \bullet a $= e$

Finite Group

- If a group has finite number of elements, it is referred as a finite Group.
- Number of elements in the group is called the order of the group.
- A group with infinite number of elements is called infinite group.

Abelian group

• A group is abelian if follows the following axiom in addition to (A1) to (A4)

(A5) commutative : $a \bullet b = b \bullet a$ for all a,b in G.

The set of integers(positive,negative and 0) under addition follow all axioms

(A1) Closure: adding two positive integers is positive integer, two negative integers is negative integers, positive and negative may end up in positive or negative integer.

 $5+2 = 7$

 $-2+3=1$

-3+-3=-6

(A2)Associative: 3+(4+5)=(3+4)+5

 $-2+(-5+-6)=(-2+-5)+-6$

(A3)Identity element: 5+0=0+5=5

 $-3+0=0+ -3= -3$

(A4) Inverse element : 5+(-5)=0

(A5) Commutative : 5 + -7 = -7+5

***** For group operation addition, the identity element is 0, inverse element of a is –a. subtraction is defined as $a-b = a+(-b)$.

Abelian group

Cyclic group

- a^4 = axaxaxa
- a^{0} =e(as identity element)
- a^{-n} =(a')n where a' is the inverse element of a within the group.
- A group G is cyclic if every element of G is a power a^k (k is an integer) of a fixed element aεG. The element a is said to generate the group G or to be a generator of G. A cyclic group is always abelian and may be finite or infinite.
- The additive group of integers is an infinite cyclic group generated by the element 1.
- Powers are interpreted as addition so that nth power of 1.
- $1^1+2^1+3^1+....$

Rings:

- A ring R, denoted by $\{R, +, x\}$ is a set of elements with two binary operations(addition and multiplication) such that all axioms are followed for all a,b,c in R .
- (A1-A5) R satisfies A1 through A5 for addition so R is an abelian group with respect to addition.
- (M1) Closure under multiplication ab is in R if a and b belong to R.
- (M2) Associativity of multiplication $-a(bc)=(ab)c$ for all a,b,c in R.
- (M3) distributive laws –

- 1. $a(b+c) = ab+ac$ for all a,b,c in R.
- 2. $(a+b)c = ac + bc$ for all a,b,c in R.
- Ring can do addition, multiplication and subtraction. Subtraction is [a-b=a+(-b)].
	- A set of integer numbers(positive, negative and 0) is a ring, with respect to addition and multiplication.
	- The set of all matrices is a ring.
	- Ring is commutative If following axiom is satisfied.

(M4) commutative(multiplication): ab=ba for all a,b, in R.

Integral domain:

• Integral domain is a commutative ring if following axioms are satisfied.

(M5) Multiplicative identity – the element 1 in R such that a1=1a=a for all a in R.

(M6)No zero divisor $-$ if a,b in R and ab=0 then either a=0 or b=0.

• Let S be the set of integers positive, negative and 0 under operation of addition and multiplication, S is an integral domain.

Fields:

• A field F denoted by $[F, +,x]$ is set of elements with two binary operations, called addition and multiplication, such that all a,b,c in F follows following axioms.

(A1-M6) : F is an integral domain if F satisfies axioms A1 through A5 and M1 through M6.

(M7) Multiplicative inverse : For each a in F, except 0, there is an element a⁻¹ in F such that aa $^{\text{-1}}$ in F such that aa $^{\text{-1}}$ =(a $^{\text{-1}}$)a=1

- In Field, addition, subtraction, multiplication and division results in the same set.
- Division is defined as $a/b=a(b^{-1})$
- All rational, real and complex numbers are field.

Finite Fields of the Form GF(p)

- Finite fields are important in cryptography
- Order of a finite field that is number of elements in the field must be a power of a prime p^{n} , where n is a positive integer.

GF(pⁿ)

- Finite field of order p^n is $GF(p^n)$.
- GF stands for Galois field, in the honor of mathematician who studied this for the first time.
- Two special cases exist.
	- 1. n=1, finite field GF(p)

2. n>1

Finite fields of Order p

- For a given prime p, finite field of order p, Gf(p) as the set Zp of integers {0,1…p-1} together with the arithmetic operations modulo p.
- Zp is a commutative ring, with the arithmetic operations modulo p.
- Any integer in Zp has multiplicative inverse if and only if that integer is relatively prime to p.
- If p is prime, then all nonzero integers in Zp are relatively prime to p so for all elements multiplicative inverse exist.

GF(2) – addition is equivalent to XOR and multiplication is equivalent to logical AND.

Finding the multiplicative inverse in GF(p)

- if a and b are relatively prime, then b has a multiplicative inverse modulo a.
- For positive integer b<a there exists b⁻¹<a such that bb⁻¹=1 mod a.

if by mod a=1 then $y=b^{-1}$

Addition modulo 5 GF(5)

Multiplicative modulo 5 GF(5)

additive and multiplicative inverse modulo 5.

Finite Fields of the form GF(p)

Finite fields are used in cryptography. The number of elements in the field must be power of prime pⁿ, where n is a positive integer.

The finite field of order $pⁿ$ is written as $GF(pⁿ)$; GF stands for Galois field. For n=1, the finite field is GF(p)

- For a given prime p, finite field of order p, $GF(p)$, as the set of Z_p of integers [0,1,…,p-1} together with the arithmetic operations modulo p.
- An integer in Z_p has a multiplicative inverse, if and only if that integer is relatively prime to p.
- If p is prime, then all nonzero integers in Z_p are relatively prime to p and therefore there exists a multiplicative inverse for all nonzero integers in Z_{p} .

GF(p) has following properties

- GF(p) consists of p elements
- The binary operations + and x are defined over set. The operations of addition, subtraction, multiplication and division can be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse.