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Minimal polynomials

Learning Outcomes: 1. Algebraic and transcendental elements.

2. Minimal polynomial of an algebraic element.

3. Degree of the simple extension K(c)/K.

In the previous module we defined degree [F : K] of a field extension F/K to be the dimension

of F as a vector space over K. Though we have results ensuring existence of basis of every vector

space, but there is no for finding a basis in general. In this module we set the theory a step forward

to find [F : K]. The degree of a simple extension K(c)/K is finite if and only if c is a root of some

nonconstant polynomial f(x) over K. Here we discuss how to find a basis and dimension of such

simple extensions K(c)/K.

Definition 0.1. Let F/K be a field extension. Then c ∈ F is called an algebraic element over

K, if there is a nonconstant polynomial f(x) ∈ K[x] such that f(c) = 0, i.e. if there exists

k0, k1, · · · , kn ∈ K not all zero such that

k0 + k1c+ · · ·+ knc
n = 0.

Otherwise c is called a transcendental element over K.

Example 0.2. 1. 1,
√

2, 3
√

5, i etc are algebraic over Q.

2. e, π, ee are transcendental over Q. [For a proof that e is transcendental over Q we refer to the

classic text Topics in Algebra by I. N. Herstein.]

The algebraic elements α ∈ C over Q are of special interest for their importance in algebra,

geometry, number theory, cryptography, etc..

Definition 0.3. A complex number α is called an algebraic number if α is an algebraic element

over Q that is, if there is a nonconstant polynomial f(x) with rational coefficients such that

f(α) = 0.

Otherwise α ∈ C is called a transcendental number.

Let α ∈ F be an algebraic element over K. Now we show that uniqueness can be imposed to

the polynomials f(x) ∈ K[x] such that f(α) = 0 up to some restrictions.
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Theorem 0.4. Let F/K be a field extension and α ∈ F be algebraic over K. Then there is a unique

monic polynomial m(x) ∈ K[x] of least degree such that m(α) = 0.

Proof. Since α is algebraic over K, there is a nonconstant polynomial f(x) ∈ K[x] such that

f(α) = 0. This implies that P = {f(x) ∈ K[x] | f(x) is nonconstant and f(α) = 0} is nonempty

and hence N = {deg f(x) | f(x) ∈ P} is a nonempty subset of N. By the well-ordering principle

of natural numbers, N has the least element, say n and correspondingly a polynomial f(x) =

k0x
n + k1x

n−1 + · · ·+ kn−1x+ kn ∈ K[x] of degree n in P . Then k0 6= 0 and hence m(x) = k−1
0 f(x)

becomes a monic polynomial of the least degree n such that m(α) = 0.

Suppose p(x) is a monic polynomial of degree n and p(α) = 0. Since K is a field, there

are q(x), r(x) ∈ K[x] such that p(x) = m(x)q(x) + r(x) where r(x) = 0 or deg r(x) < degm(x).

If deg r(x) < degm(x), then r(x) becomes a nonconstant polynomial such that r(α) = p(α) −
m(α)q(α) = 0, which contradicts the choice of m(x) as a polynomial of least degree such that

m(α) = 0. Thus r(x) = 0 and we have p(x) = m(x)q(x) which implies that deg q(x) = 0, i.e.

q(x) = k ∈ K. Since both p(x) and m(x) are monic, p(x) = km(x) implies that k = 1 and thus the

uniqueness of m(x) is established.

Definition 0.5. Let F/K be a field extension and α ∈ F algebraic over K. Then the unique monic

polynomial m(x) ∈ K[x] of least degree such that m(α) = 0 is called the minimal polynomial of α

over K.

If n = degm(x), then α is called algebraic of degree n over K.

Example 0.6. Consider the extension R/Q. Then x2 − 3 is the minimal polynomial of
√

3 ∈ R
over Q. Thus

√
3 is algebraic of degree 2 over Q.

Example 0.7. Let F/K be a field extension and c be algebraic over K of degree 5. We show that

K(c) = K(c2).

Let m(x) = x5 + k4x
4 + k3x

3 + k2x
2 + k1x + k0 be the minimal polynomial of c over K.

Then c can not be a root of any polynomial of degree less than 5, and so c4 + k3c
2 + k1 6= 0. Then

c5+k4c
4+k3c

3+k2c
2+k1c+k0 = 0 implies that c = −k0−k2c2−k4c4

k1+k3c2+c4
∈ K(c2), and hence K(c) ⊆ K(c2).

Again c2 ∈ K(c) implies that K(c2) ⊆ K(c). Thus K(c) = K(c2).

Though the above proof for the existence and uniqueness of the minimal polynomial m(x) is

intrinsic still it does not suggest any working method for finding the minimal polynomial. Now we

show that irreducibility may be an efficient equivalent criterion for our practical purpose.

First let us prove the following lemma which is a direct consequence of the leastness of the

minimal polynomial m(x) in degree such that m(α) = 0:

Lemma 0.8. Let F/K be a field extension and α ∈ F algebraic over K. Then for every f(x) ∈ K[x],

f(α) = 0 implies that m(x) | f(x).
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Proof. By the Division Algorithm, there are q(x), r(x) ∈ K[x] such that f(x) = m(x)q(x) + r(x)

where r(x) = 0 or deg r(x) < degm(x). If deg r(x) < degm(x), then r(x) becomes a nonconstant

polynomial such that r(α) = p(α) − m(α)q(α) = 0, which contradicts the choice of m(x) as a

polynomial of least degree such that m(α) = 0. Thus r(x) = 0 and we have f(x) = m(x)q(x) which

implies that m(x) | f(x).

If f(x) is a nonconstant polynomial such that f(α) = 0, then the above lemma shows that some

factor of f(x) is the minimal polynomial of α. Thus if we have some irreducible polynomial p(x) such

that p(α) = 0, then this must be the monic polynomial up to a unit multiple, that is m(x) = up(x).

Since K[x] is a UFD, there are irreducible polynomials p1(x), p2(x), · · · , pm(x) ∈ K[x] such that

f(x) = p1(x)p2(x) · · · pm(x). Then f(α) = 0 implies that p1(α)p2(α) · · · pm(α) = 0 and hence

pi(α) = 0 for some i. Thus we have an irreducible polynomial pi(x) having a root α. Now we show

that irreducibility is enough to characterize minimal polynomials.

Theorem 0.9. Let F/K be a field extension and α ∈ F algebraic over K. Then m(x) ∈ K[x] is

the minimal polynomial of α over K if and only if it is a monic irreducible polynomial such that

m(α) = 0.

Proof. First assume that m(x) ∈ K[x] is the minimal polynomial of α over K. Suppose m(x) =

u(x)v(x), u(x), v(x) ∈ K[x]. Then m(α) = 0 implies that either u(α) = 0 or v(α) = 0. If u(α) = 0,

then deg u(x) can never be less than degm(x) and hence deg u(x) = degm(x). This implies that

deg v(x) = 0 and hence v(x) is a unit. Similarly v(α) = 0 implies that u(x) is a unit. Thus m(x) is

irreducible.

Conversely, consider a monic and irreducible polynomial p(x) ∈ K[x] such that p(α) = 0. Then

p(x) = m(x)q(x). Then the irreducibility of p(x) implies that either m(x) is a unit or q(x) is a

unit. Since m(x) is nonconstant, it is not a unit. Thus q(x) is a unit. Since both p(x) and m(x)

are monic we have q(x) = 1. Thus p(x) = m(x).

Now we characterize algebraic elements and simple extensions generated by the algebraic ele-

ments.

Corollary 0.10. Let F/K be a field extension and α ∈ F . Then α is algebraic over K if and only

if K[α] = K(α). Moreover in this case, K[α] = K(α) ' K[x]/ < m(x) >.

Proof. First assume that α is algebraic over K. Define ψ : K[x] −→ K[α] by: for every f(x) ∈ K[x],

ψ(f(x)) = f(α).

Then ψ is an onto homomorphism. Now

kerψ = {f(x) ∈ K[x] | f(α) = 0}
= {f(x) ∈ K[x] | m(x) | f(x)}
=< m(x) >

4



implies, by the First Isomorphism Theorem, that K[x]/ < m(x) >' K[α]. Since m(x) is irreducible,

it follows that K[x]/ < m(x) > is a field forcing K[α] to be a field. Hence K[α] = K(α).

Conversely, suppose that K[α] = K(α). That α = 0 is algebraic follows directly. Let α 6= 0.

Since K(α) is a field, α−1 ∈ K(α) = K[α] and hence α−1 = k0 + k1α+ · · ·+ knα
n for some ki ∈ K,

where ki, i = 0, 1, 2, · · · , n are not all zero. Then knα
n+1 + kn−1α

n + · · ·+ k0α− 1 = 0 which shows

that α is algebraic over K.

In the following we show that K(c) is an infinite extension of K for every transcendental

element c.

Corollary 0.11. Let F/K be a field extension and c ∈ F . Then c is transcendental over K if and

only if K[c] ( K(c). In this case, K[c] ' K[x] and K(c) ' K(x).

Proof. First part of this result follows from the above corollary, since K[c] ⊆ K(c).

For the second part, consider the onto homomorphism ψ : K[x] −→ K[c] by: for every f(x) ∈
K[x],

ψ(f(x)) = f(c).

Since c is transcendental over K, there is no nonzero polynomial f(x) ∈ K[x] such that f(c) = 0.

Thus kerψ = {0} showing that ψ is one-to-one. Thus K[x] ' K[c].

Since K(x) and K(c) are the quotient fields of K[x] and K[c] respectively, ψ : K[x] −→ K[c]

induces an isomorphism ψ∗ : K(x) −→ K(c) defined by: for every f(x)
g(x)
∈ K(x),

ψ∗(
f(x)

g(x)
) =

f(c)

g(c)
.

Therefore K(c) ' K(x).

If m(x) is a polynomial of degree n, then the division algorithm for polynomials over a field

implies that K[x]/ < m(x) > is a vector space of dimension n over K with a basis {1+ < m(x) >

, x+ < m(x) >, · · · , xn−1+ < m(x) >}. Also if m(x) is irreducible over K, then F = K[x]/ <

m(x) > is a field and c = x+ < m(x) >∈ F is a root of m(x). Thus, by the Corollary 1, we have:

Theorem 0.12. Let F/K be a field extension, c ∈ F be algebraic over K and m(x) be the minimal

polynomial of c over K. If degm(x) = n, then {1, c, c2, · · · , cn−1} is a basis of K(c) over K. Thus

[K(c) : K] = degm(x).

Proof. Let α ∈ K(c). Since c is algebraic over K, K(c) = K[c]. This implies that α = f(c) for

some f(x) ∈ K[x]. Then, by the Division Algorithm, there are q(x), r(x) ∈ K[x] such that

f(x) = m(x)q(x) + r(x)
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where r(x) = 0 or deg r(x) < degm(x). In either case we can assume that r(x) = r0 + r1x + · · ·+
rn−1x

n−1 where ri ∈ K. Then m(c) = 0 implies that

α = f(c) = r(c) = r0 + r1c+ · · ·+ rn−1c
n−1.

Hence {1, c, c2, · · · , cn−1} generates K(c) over K. For the linear independence note that if there are

k0, k1, · · · , kn−1 ∈ K some of which is nonzero such that

k0 + k1c+ · · ·+ kn−1c
n−1 = 0

then p(x) = k0 + k1x + · · · + kn−1x
n−1 ∈ K[x] becomes a nonzero polynomial of degree less than

degm(x) such that p(c) = 0 which contradicts that m(x) is the minimal polynomial of c over K.

Thus {1, c, c2, · · · , cn−1} is a basis of K(c) over K.

Now we give some examples to demonstrate applications of this theorem.

Example 0.13. Consider the extension Q( 3
√

2) of Q. The minimal polynomial of 3
√

2 over Q is

given by m(x) = x3 − 2. So [Q( 3
√

2) : Q] = 3 and {1, 3
√

2, ( 3
√

2)2} is a basis of Q( 3
√

2) over Q. Thus

Q(
3
√

2) = {a+ b21/3 + c22/3|a, b, c ∈ Q}.

Example 0.14. We can consider Q(
√

2,
√

3) as Q(
√

3)(
√

2). Since x2−2 is irreducible over Q(
√

3),

the minimal polynomial of
√

2 over Q(
√

3) is x2 − 2. Then [Q(
√

3)(
√

2) : Q(
√

3)] = 2 and {1,
√

2}
is a basis of Q(

√
3)(
√

2) over Q(
√

3). Also [Q(
√

3),Q] = 2 and {1,
√

3} is a basis of Q(
√

3) over

Q. Thus, [Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

3)][Q(
√

3) : Q] = 4.

Since {1,
√

2} is a basis of Q(
√

3)(
√

2) over Q(
√

3) and {1,
√

3} is a basis of Q(
√

3) over Q, it follows

that {1,
√

2,
√

3,
√

6} is a basis of Q(
√

2,
√

3) over Q. Thus Q(
√

2,
√

3) = {a+ b
√

2 + c
√

3 + d
√

6 |
a, b, c, d ∈ Q}.
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1 summary

• Let F/K be a field extension. Then c ∈ F is called an algebraic element over K, if there is a

nonconstant polynomial f(x) ∈ K[x] such that f(c) = 0, i.e. if there exists k0, k1, · · · , kn ∈ K
not all zero such that

k0 + k1c+ · · ·+ knc
n = 0.

Otherwise c is called a transcendental element over K.

• A complex number α is called an algebraic number if α is an algebraic element over Q that

is, if there is a nonconstant polynomial f(x) with rational coefficients such that

f(α) = 0.

Otherwise α ∈ C is called a transcendental number.

• Let F/K be a field extension of fields and α ∈ F be algebraic over K. Then there is a unique

monic polynomial m(x) ∈ K[x] of least degree such that m(α) = 0.

• Let F/K be a field extension and α ∈ F algebraic over K. Then the unique monic polynomial

m(x) ∈ K[x] of least degree such that m(α) = 0 is called the minimal polynomial of α over

K.

If n = degm(x), then α is called algebraic of degree n over K.

• Let F/K be a field extension and α ∈ F algebraic over K. Then for every f(x) ∈ K[x],

f(α) = 0 implies that m(x) | f(x).

• Let F/K be a field extension and α ∈ F algebraic over K. Then m(x) ∈ K[x] is the minimal

polynomial of α over K if and only if it is a monic irreducible polynomial such that m(α) = 0.

• Let F/K be a field extension and α ∈ F . Then α is algebraic over K if and only if K[α] =

K(α). Moreover in this case, K[α] = K(α) ' K[x]/ < m(x) >.

• Let F/K be a field extension and c ∈ F . Then c is transcendental over K if and only if

K[c] ( K(c). In this case, K[c] ' K[x] and K(c) ' K(x).

• Let F/K be a field extension, c ∈ F be algebraic over K and m(x) be the minimal polynomial

of c over K. If degm(x) = n, then {1, c, c2, · · · , cn−1} is a basis of K(c) over K. Thus

[K(c) : K] = degm(x).
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