Subject : MATHEMATICS

Paper 1 : ABSTRACT ALGEBRA

Chapter 7: Factorizations in Integral Domains

Module 2 : Prime and irreducible elements

Anjan Kumar Bhuniya

Department of Mathematics Visva-Bharati; Santiniketan West Bengal

E-mail: anjankbhuniya@gmail.com

Prime and irreducible elements

Learning Objectives:	1. Introduction of prime and irreducible elements.
	2. Relations between prime and irreducible elements.
	3. is a prime ideal if and only if p is prime.
	4. Irreducibility of the generators of principal maximal ideals.

An integer p > 1 is called a prime integer if 1 and p are the only two positive divisors of p. An integer p > 1 is prime if and only if $p \mid ab$ implies that $p \mid a$ or $p \mid b$. But this equivalence does not hold in an integral domain in general. In this section the notion of prime integers are generalized into prime elements and irreducible elements in a commutative ring with 1.

Definition 0.1. Let R be a commutative ring with 1 and p be a nonzero nonunit element of R.

- 1. Then p is called irreducible if for every $a, b \in R$, p = ab implies that either a or b is a unit. p is called reducible if p is not irreducible.
- 2. Then p is called prime if for every $a, b \in R$, $p \mid ab$ implies that either $p \mid a \text{ or } p \mid b$.

In the ring \mathbb{Z} of all integers, only possible factorizations of 7 are 7×1 and $(-7) \times (-1)$. In each of these factorizations one factor is unit and hence 7 is an irreducible element.

Now for $a, b \in \mathbb{Z}$, $-7 \mid ab$ implies that $7 \mid ab$ and so either $7 \mid a$ or $7 \mid b$. This implies that $-7 \mid a$ or $-7 \mid b$. Thus -7 is a prime element in \mathbb{Z} .

Now we give two examples to show that neither every irreducible element is prime nor every prime element is irreducible.

Example 0.2. Consider the integral domain $\mathbb{Z}[i\sqrt{5}]$ and the element $2 + i\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$. To test irreducibility of $2 + i\sqrt{5}$, assume that $2 + i\sqrt{5} = (a + ib\sqrt{5})(c + id\sqrt{5})$ for some $a + ib\sqrt{5}, c + id\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$. It follows that $(a^2 + 5b^2)(c^2 + 5d^2) = 9$. Hence we have

$$a^2 + 5b^2 = 3 \text{ and } c^2 + 5d^2 = 3$$
 (0.1)

or
$$a^2 + 5b^2 = 1$$
 and $c^2 + 5d^2 = 9$ (0.2)

or
$$a^2 + 5b^2 = 9$$
 and $c^2 + 5d^2 = 1$ (0.3)

Equation (0.1) has no solution and from equations (0.2) and (0.3), it follows that $a + ib\sqrt{5} = \pm 1$ or $c + id\sqrt{5} = \pm 1$. Hence $2 + i\sqrt{5}$ is an irreducible element in $\mathbb{Z}[i\sqrt{5}]$.

Now $(2 + i\sqrt{5})(2 - i\sqrt{5}) = 9 = 3 \times 3$ implies that $2 + i\sqrt{5} \mid 3 \times 3$. If $2 + i\sqrt{5} \mid 3$, then $3 = (2 + i\sqrt{5})(a + ib\sqrt{5})$ for some $a + ib\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$, which implies that 3 = 2a - 5b and a + 2b = 0, and 3 = -9b, which contradicts $b \in \mathbb{Z}$. Hence $2 + i\sqrt{5} \nmid 3$ and so $2 + i\sqrt{5}$ is not a prime element in $\mathbb{Z}[i\sqrt{5}]$.

Example 0.3. Consider the ring \mathbb{Z}_6 . This is a commutative ring with unity [1]; and the unit elements are [1] and [5]. Since [3] = [3][3] and [3] is not a unit it follows that [3] is reducible.

Now we show that [3] is a prime element in \mathbb{Z}_6 . Let $[a], [b] \in \mathbb{Z}_6$ be such that $[3] \mid [a][b]$. Then [a][b] = [3][c], for some $[c] \in \mathbb{Z}_6$. This implies that $6 \mid (ab - 3c)$. Then $3 \mid (ab - 3c)$, and hence $3 \mid ab$. Since 3 is prime in \mathbb{Z} , $3 \mid a \text{ or } 3 \mid b$. Thus either $[3] \mid [a]$ or $[3] \mid [b]$ and hence [3] is a prime element in \mathbb{Z}_6 .

Theorem 0.4. In an integral domain every prime element is irreducible.

Proof. Consider an integral domain R and a prime element p in R. Suppose p = bc for some $b, c \in R$. Then p|bc which implies that p|b or p|c, since p is prime. If p|b, then b = pq for some $q \in R$. Thus, p = bc = pqc and so p(1 - qc) = 0. This implies that 1 - qc = 0, since there is no zero divisors in R and $p \neq 0$. Thus qc = 1 showing that c is a unit. Similarly, if p|c then b is a unit. Hence p is irreducible.

Now we show that prime elements generate prime ideals.

Theorem 0.5. Let R be a commutative ring with 1 and let $P = \langle p \rangle$ be a nonzero ideal of R. Then P is a prime ideal if and only if p is a prime element.

Proof. First suppose that P is a prime ideal of R. Since P is nonzero and proper, p is neither zero nor a unit. Consider $a, b \in R$ and assume that p|ab. Then $ab \in P$ which implies that either $a \in P$ or $b \in P$, since P is a prime ideal. Thus either p|a or p|b and hence p is a prime element.

Conversely, suppose that p is a prime element. Since p is nonunit, so P is a proper ideal of R. Now consider two elements $a, b \in R$ and assume that $ab \in P$. Then p|ab which implies that p | a or p | b, since p is a prime element. Thus either $a \in P$ or $b \in P$ and hence P is a prime ideal of R. \Box

Theorem 0.6. Let D be an integral domain. If $M = \langle q \rangle$ is a nonzero maximal ideal of D then q is an irreducible element.

Proof. Every maximal ideal is, by definition, a proper ideal. Hence q is not a unit. Also q is nonzero, since M is a nonzero ideal. Consider $a, b \in D$ and assume that q = ab. Then $q \in a > and$ so $M = \langle q \rangle \subseteq \langle a \rangle$. Hence $M = \langle a \rangle$ or $\langle a \rangle = D$, since M is a maximal ideal. If $M = \langle a \rangle$ then $a \in M$ shows that a = qc for some $c \in D$. Then q = ab = qcb implies that 1 = cb, by the cancelation law in D, and hence b is a unit. If $\langle a \rangle = D$ then $1 \in \langle a \rangle$ shows that 1 = ad for some $d \in D$, and hence a is a unit. Thus q is an irreducible element.

The above result is not true in a ring R which is not an integral domain.

Consider the ring \mathbb{Z}_6 . Then [1] and [5] are the only units in \mathbb{Z}_6 . Now $M = \{[0], [3]\} = < [3] >$ is a maximal ideal, but [3] = [3][3] shows that [3] is not an irreducible element of \mathbb{Z}_6 .

Hence the converse of the above theorem is not true.

Example 0.7. Consider the ring $R = \mathbb{Z}[x]$. Then x is an irreducible element of R. To prove this, consider $f(x), g(x) \in \mathbb{Z}[x]$ such that x = f(x)g(x). Then $1 = \deg f(x) + \deg g(x)$, since \mathbb{Z} is an integral domain, which implies that either deg f(x) = 0 or deg g(x) = 0. If deg f(x) = 0 then $f(x) = a \in \mathbb{Z}$, and so x = ag(x) which implies that $1 = ab_1$ for some $b_1 \in \mathbb{Z}$. Thus a = f(x) is a unit in $\mathbb{Z}[x]$. Similarly, if deg g(x) = 0 then g(x) is a unit. Thus x is irreducible.

But $\mathbb{Z}[x]/\langle x \rangle \simeq \mathbb{Z}$ shows that $\langle x \rangle$ is not a maximal ideal of $\mathbb{Z}[x]$, since \mathbb{Z} is not a field.

Summary 1

- Let R be a commutative ring with 1 and p be a nonzero nonunit element of R.
 - (i) Then p is called irreducible if for every $a, b \in R$, p = ab implies that either a or b is a unit.

p is called reducible if p is not irreducible.

- (ii) Then p is called prime if for every $a, b \in R$, $p \mid ab$ implies that either $p \mid a$ or $p \mid b$.
- $2 + i\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$ is an irreducible element but not a prime. duate
- $[3] \in \mathbb{Z}_6$ is a prime element but not irreducible.
- In an integral domain every prime element is irreducible.
- Let R be a commutative ring with 1 and let $P = \langle p \rangle$ be a nonzero ideal of R. Then P is a prime ideal if and only if p is a prime element.
- Let D be an integral domain. If $M = \langle q \rangle$ is a nonzero maximal ideal of D then q is an irreducible element.

The converse is not true.