Subject : MATHEMATICS

Paper 1 : ABSTRACT ALGEBRA

Chapter 7 : Factorizations in Integral Domains

Module 2 : Prime and irreducible elements

Anjan Kumar Bhuniya

Department of Mathematics Visva-Bharati; Santiniketan West Bengal

E-mail: anjankbhuniya@gmail.com

Prime and irreducible elements

An integer $p > 1$ is called a prime integer if 1 and p are the only two positive divisors of p. An integer $p > 1$ is prime if and only if $p | ab$ implies that $p | a$ or $p | b$. But this equivalence does not hold in an integral domain in general. In this section the notion of prime integers are generalized into prime elements and irreducible elements in a commutative ring with 1.

Definition 0.1. Let R be a commutative ring with 1 and p be a nonzero nonunit element of R.

- 1. Then p is called irreducible if for every $a, b \in R$, $p = ab$ implies that either a or b is a unit. p is called reducible if p is not irreducible.
- 2. Then p is called prime if for every $a, b \in R$, p | ab implies that either p | a or p | b.

In the ring Z of all integers, only possible factorizations of 7 are 7×1 and $(-7) \times (-1)$. In each of these factorizations one factor is unit and hence 7 is an irreducible element.

Now for $a, b \in \mathbb{Z}$, -7 | ab implies that 7 | ab and so either 7 | a or 7 | b. This implies that -7 | a or -7 | b. Thus -7 is a prime element in \mathbb{Z} .

Now we give two examples to show that neither every irreducible element is prime nor every prime element is irreducible.

Example 0.2. Consider the integral domain $\mathbb{Z}[i\sqrt{\frac{m}{n}}]$ 5] and the element $2 + i$ $\sqrt{5} \in \mathbb{Z}[i\sqrt{3}]$ sider the integral domain $\mathbb{Z}[i\sqrt{5}]$ and the element $2 + i\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$. To test **Example 6.2.** Constant the integral ability $\mathbb{Z}[v]$ of and the element $2 + v \sqrt{5} \leq \mathbb{Z}[v \sqrt{5}]$. To lest
irreducibility of $2 + i\sqrt{5}$, assume that $2 + i\sqrt{5} = (a + ib\sqrt{5})(c + id\sqrt{5})$ for some $a + ib\sqrt{5}, c + id\sqrt{5} \in$ Z[i √ $\overline{5}$. It follows that $(a^2 + 5b^2)(c^2 + 5d^2) = 9$. Hence we have

$$
a^2 + 5b^2 = 3 \text{ and } c^2 + 5d^2 = 3 \tag{0.1}
$$

$$
or a2 + 5b2 = 1 and c2 + 5d2 = 9
$$
\n(0.2)

$$
or a2 + 5b2 = 9 and c2 + 5d2 = 1
$$
\n(0.3)

Equation (0.1) has no solution and from equations (0.2) and (0.3), it follows that $a + ib\sqrt{5} = \pm 1$ Δp and (0.1) has no solution
or $c + id\sqrt{5} = \pm 1$. Hence $2 + i$ $\sqrt{5}$ is an irreducible element in $\mathbb{Z}[i\sqrt{3}]$ 5]. √ √ √ √

Now $(2+i)$ $(5)(2-i)$ $(5) = 9 = 3 \times 3$ implies that $2 + i$ $5 \mid 3 \times 3$. If $2 + i$ $5 \mid 3, \text{ then}$ $3 = (2+i)$ $\sqrt{5}(a+ib\sqrt{5})$ for some $a+ib\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$ 5], which implies that $3 = 2a - 5b$ and $a + 2b = 0$, and $3 = -9b$, which contradicts $b \in \mathbb{Z}$. Hence $2 + i\sqrt{5}/3$ and so $2 + i\sqrt{5}$ $d\ 3 = -9b$, which contradicts $b \in \mathbb{Z}$. Hence $2 + i\sqrt{5}/3$ and so $2 + i\sqrt{5}$ is not a prime element in $\mathbb{Z}[i\sqrt{5}].$

Example 0.3. Consider the ring \mathbb{Z}_6 . This is a commutative ring with unity [1]; and the unit elements are $[1]$ and $[5]$. Since $[3] = [3][3]$ and $[3]$ is not a unit it follows that $[3]$ is reducible.

Now we show that $[3]$ is a prime element in \mathbb{Z}_6 . Let $[a], [b] \in \mathbb{Z}_6$ be such that $[3] | [a][b]$. Then $[a][b] = [3][c]$, for some $[c] \in \mathbb{Z}_6$. This implies that $6|(ab-3c)$. Then $3|(ab-3c)$, and hence $3|ab$. Since 3 is prime in \mathbb{Z} , 3|a or 3|b. Thus either [3]|[a] or [3]|[b] and hence [3] is a prime element in $\mathbb{Z}_6.$

Theorem 0.4. In an integral domain every prime element is irreducible.

Proof. Consider an integral domain R and a prime element p in R. Suppose $p = bc$ for some $b, c \in R$. Then p|bc which implies that p|b or p|c, since p is prime. If p|b, then $b = pq$ for some $q \in R$. Thus, $p = bc = pqc$ and so $p(1 - qc) = 0$. This implies that $1 - qc = 0$, since there is no zero divisors in R and $p \neq 0$. Thus $qc = 1$ showing that c is a unit. Similarly, if $p|c$ then b is a unit. Hence p is irreducible. □

Now we show that prime elements generate prime ideals.

Theorem 0.5. Let R be a commutative ring with 1 and let $P = \langle p \rangle$ be a nonzero ideal of R.
Then P is a prime ideal if and solution is a set of the set of $P = \langle p \rangle$ be a nonzero ideal of R. Then P is a prime ideal if and only if p is a prime element.

Proof. First suppose that P is a prime ideal of R. Since P is nonzero and proper, p is neither zero nor a unit. Consider $a, b \in R$ and assume that $p|ab$. Then $ab \in P$ which implies that either $a \in P$ or $b \in P$, since P is a prime ideal. Thus either p|a or p|b and hence p is a prime element.

Conversely, suppose that p is a prime element. Since p is nonunit, so P is a proper ideal of R. Now consider two elements $a, b \in R$ and assume that $ab \in P$. Then p|ab which implies that p|a or $p | b$, since p is a prime element. Thus either $a \in P$ or $b \in P$ and hence P is a prime ideal of R. \Box

Theorem 0.6. Let D be an integral domain. If $M = \langle q \rangle$ is a nonzero maximal ideal of D then q is an irreducible element.

Proof. Every maximal ideal is, by definition, a proper ideal. Hence q is not a unit. Also q is nonzero, since M is a nonzero ideal. Consider $a, b \in D$ and assume that $q = ab$. Then $q \in < a >$ and so $M = \langle q \rangle \subseteq \langle a \rangle$. Hence $M = \langle a \rangle$ or $\langle a \rangle = D$, since M is a maximal ideal. If $M = \langle a \rangle$ then $a \in M$ shows that $a = qc$ for some $c \in D$. Then $q = ab = qcb$ implies that $1 = cb$, by the cancelation law in D, and hence b is a unit. If $\lt a \gt= D$ then $1 \leq \lt a \gt$ shows that $1 = ad$ for \Box some $d \in D$, and hence a is a unit. Thus q is an irreducible element.

The above result is not true in a ring R which is not an integral domain.

Consider the ring \mathbb{Z}_6 . Then [1] and [5] are the only units in \mathbb{Z}_6 . Now $M = \{[0], [3]\} = \{5\}$ is a maximal ideal, but $[3] = [3][3]$ shows that $[3]$ is not an irreducible element of \mathbb{Z}_6 .

Hence the converse of the above theorem is not true.

Example 0.7. Consider the ring $R = \mathbb{Z}[x]$. Then x is an irreducible element of R. To prove this, consider $f(x)$, $g(x) \in \mathbb{Z}[x]$ such that $x = f(x)g(x)$. Then $1 = \deg f(x) + \deg g(x)$, since $\mathbb Z$ is an integral domain, which implies that either deg $f(x) = 0$ or deg $g(x) = 0$. If deg $f(x) = 0$ then $f(x) = a \in \mathbb{Z}$, and so $x = ag(x)$ which implies that $1 = ab_1$ for some $b_1 \in \mathbb{Z}$. Thus $a = f(x)$ is a unit in $\mathbb{Z}[x]$. Similarly, if $\deg g(x) = 0$ then $g(x)$ is a unit. Thus x is irreducible.

But $\mathbb{Z}[x]/\langle x \rangle \simeq \mathbb{Z}$ shows that $\langle x \rangle$ is not a maximal ideal of $\mathbb{Z}[x]$, since \mathbb{Z} is not a field.

1 Summary

- Let R be a commutative ring with 1 and p be a nonzero nonunit element of R.
	- (i) Then p is called irreducible if for every $a, b \in R$, $p = ab$ implies that either a or b is a unit.

 p is called reducible if p is not irreducible.

- (ii) Then p is called prime if for every $a, b \in R$, p | ab implies that either p | a or p | b.
- \bullet 2 + i $\sqrt{5} \in \mathbb{Z}[i\sqrt{3}]$ 5] is an irreducible element but not a prime.
- [3] $\in \mathbb{Z}_6$ is a prime element but not irreducible.
- In an integral domain every prime element is irreducible.
- Let R be a commutative ring with 1 and let $P = \langle p \rangle$ be a nonzero ideal of R. Then P is a prime ideal if and only if p is a prime element.
- Let D be an integral domain. If $M = \langle q \rangle$ is a nonzero maximal ideal of D then q is an irreducible element.

The converse is not true.