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Applications of Sylow Theorems

Learning Outcomes: 1. Characterization of simple groups of small order.

2. A5 is simple.

3. Every simple group of order 60 is isomorphic to A5.

The notion of simple group was introduced by Galois in his work on the insolvability of quintics.

The simplicity of A5 plays a crucial role in his proof that there are quintics which can not be solved

by radicals. But simple groups are known as the El Dorado of finite group theory because of their

role to study structure of finite groups. Their role in finite group theory is somewhat analogous to

that of primes in number theory, that is, they are the basic building blocks for all groups. Theory

of simple groups is vast and difficult. Here we consider only simple groups of small order.

The Cauchy’s Theorem shows that no abelian group of composite order is simple. As a conse-

quence of Cauchy’s theorem we have no simple groups of order pn, p is a prime and n > 1. Sylow

theorems also help us to find possible orders of simple groups. Here we show that 60 is the smallest

composite order of a noncommutative simple group and any noncommutative simple group of order

60 is isomorphic to A5.

Recall the definition of simple group.

Definition 0.1. A group G 6= {e} is called simple if its only normal subgroups are the identity

subgroup and the group itself.

Example 0.2. We show that no group of order 10 is simple.

Let G be a group of order 10 = 5 × 2. Denote the number of Sylow 5-subgroups of G by n5.

Then n5 = 5k + 1 for some integer k ≥ 0 and n5|10. It follows that n5 = 1, that is, G has unique

sylow 5-subgroup H of order 5. Hence H is normal in G, and so G is not simple.

Theorem 0.3. No group of order pq, where p, q are prime integers, is simple.

Proof. Let G be a group of order pq. If p = q, then |G| = p2 implies that G is abelian. Also, by

Cauchy’s Theorem, G has an element a and hence a subgroup H =< a > of order p. Since G is

abelian, H is normal in G. Thus G is not simple.

Let p > q. Let np be the number of Sylolw p-subgroups of G. Then np = kp + 1 for some

integer k ≥ 0 and np|pq. Now gcd (np, p) = gcd (kp + 1, p) = 1 implies that np|q. Since p > q, so

np = kp + 1 ≤ q holds only if k = 0, that is, np = 1. Thus G has unique Sylow p-subgroup H of

order p, which is normal in G. Hence G is not simple.
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Example 0.4. We show that no group of order 30 is simple.

Let G be a group of order 30 = 5 × 3 × 2. Let n5 denote the number of Sylow 5-subgroups of

G and n3 denote the number of Sylow 3-subgroups of G. If n5 = 1 or n3 = 1 then G has a normal

subgroup of order 5 or 3 and G is not simple. If possible, n5 6= 1 and n3 6= 1. Now n5 = 5k + 1

for some integer k ≥ 0 and n5|30 implies that n5 = 6(since n5 6= 1). Similarly n3 = 10. Let

P1, P2, · · ·P6 be the six Sylow 5-subgroups. Then |Pi| = 5, a prime implies that Pi ∩Pj = {e} for all

i 6= j and their union contains 6× 4 = 24 elements of order 5. Similarly the 10 Sylow 3-subgroups

contain 10 × 2 = 20 elements of order 3. Thus |G| ≥ 24 + 20 = 44, a contradiction. Thus n5 = 1

or n3 = 1, and G is not simple.

In fact, every group of order 30 has normal subgroups of order 5 and 3.

Theorem 0.5. Let p be a prime integer and n > 1 be an integer. Then no group of order pn is

simple.

Proof. Let G be a group of order pn. Then |Z(G)| > 1. If G = Z(G) then G is abelian and so G

can not be simple, since n > 1. Let G 6= Z(G). Then Z(G) becomes a nontrivial proper normal

subgroup of G. Hence G is not simple.

Example 0.6. We show that no group of order 40 is simple.

Let G be a group of order 40 = 5 × 23. Denote the number of Sylow 5-subgroups of G by n5.

Then n5 = 5k + 1 for some integer k ≥ 0 and n5|40. It follows that n5 = 1. Thus G has unique

Sylow 5-subgroup H of order 5, which is normal in G. Hence G is not simple.

Example 0.7. We show that no group of order 96 is simple.

Let G be a group of order 96 = 25 × 3. Denote the number of Sylow 2-subgroups by n2. Then

n2 = 2k + 1 for some integer k ≥ 0 and n2|96. It follows that n2 = 1 or 3. If n2 = 1, then G

has unique Sylow 2-subgroup H which is normal in G. Now, let n2 = 3 and A,B,C be the three

Sylow 2-subgroups of G. Then |AB| = |A||B|
|A∩B| implies that 32×32

|A∩B| ≤ 96 and hence |A∩B| ≥ 10. Also,

by the Lagrange’s theorem, |A ∩ B| divides |A| = 32. Thus |A ∩ B| = 16. Since [A : A ∩ B] = 2

and [B : A ∩ B] = 2, so A ∩ B is normal in both A and B, which implies that A,B ⊆ N(A ∩ B).

Thus AB ⊆ N(A ∩ B). Now |AB| = |A||B|
|A∩B| = 64 implies that |N(A ∩ B)| ≥ 64. By the Lagrange’s

theorem, |N(A∩B)| divides 96. Therefore |N(A∩B)| = 96 and N(A∩B) = G. Hence A∩B is a

normal subgroup of G of order 16.

Example 0.8. We show that no group of order 56 is simple.

Let G be a group of order 56 = 7 × 23. Let n7 be the number of Sylow 7-subgroups of G.

Then n7 = 7k + 1 for some integer k ≥ 0 and n7|56. Hence n7 = 1 or 8. If n7 = 1, then G has

unique Sylow 7-subgroup of order 7, which is normal in G. Thus G is not simple. Let n7 = 8 and

P1, P2, · · · , P8 be the 8 Sylow 7-subgroups in G. Since Pi are distinct and |Pi| = 7, Pi∩Pj = {e} for
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i 6= j. Every nonidentity element of Pi is of order 7 and so G has 8×6 = 48 elements of order 7. If

we denote the number Sylow 2-subgroups of G by n2, then similarly, it follows that n2 = 1 or 7. If

n2 = 1 then G has unique Sylow 2-subgroup of order 8, which is normal in G. Thus G is not simple.

Let n2 = 7 and Q1, Q2, · · · , Q7 be the 7 Sylow 2-subgroups. Since Q1 6= Q2, |Q1∩Q2| ≤ 4 and hence

Q1∪Q2 contains at least 8+8−4 = 12 elements of order 2, 4 or 8. Thus we get |G| ≥ 48+12 = 60,

a contradiction. Hence either n7 = 1 or n2 = 1, ensuring that G has a nontrivial proper normal

subgroup. Therefore G is not simple.

Now we recall the generalized Cayley theorem.

Theorem 0.9. Let G be a group and H be a subgroup of G. If S = {aH|a ∈ G}, then there is a

homomorphism ϕ : G −→ A(S), the group of all permutations on S such that kerϕ ⊆ H.

Also recall that ϕ : G −→ A(G) is defined by ϕ(g) = τg for all g ∈ G, where τg : S −→ S is

given by τg(aH) = (ga)H for all aH ∈ S.

Now we have following two important consequences of the generalized Cayley Theorem.

Theorem 0.10. (Index Theorem) Let G be a finite group. If G has a proper subgroup H such that

[G : H] = m and |G| - m!, then G is not simple.

Proof. Let S = {aH|a ∈ G}. Defined τg : S −→ S by τg(aH) = (ga)H for all aH ∈ S. Then

τg ∈ A(S) and the mapping ϕ : G −→ A(S) defined by ϕ(g) = τg for all g ∈ G, is a homomorphism

such that kerϕ ⊆ H, by the generalized Cayley theorem. From the first isomorphism theorem,
G

kerϕ
∼= ϕ(G), a subgroup of A(S). Since |A(S)| = m!, so | G

kerϕ
| divides m!. But |G| - m! implies that

|kerϕ| > 1. Thus kerϕ becomes a nontrivial proper normal subgroup of G, and G is not simple.

Example 0.11. We show that no group of order 12 is simple.

Let G be a group of order 12 = 3× 22. Let H be a Sylow 2-subgroup of G. Then |G| = 22 = 4

implies that [G : H] = 3. Since 12 - 3!, so G is not simple, by the index theorem.

Similarly we can show that no group of order 15, 21, 24, 28, 33 etc. is simple.

Theorem 0.12. Every finite simple group having a subgroup of index n, is isomorphic to a subgroup

of An.

Proof. Let G be a finite simple group and H be a subgroup of G such that [G : H] = n. Denote

S = {aH : a ∈ G}. Then |S| = n which implies that A(S) ∼= Sn. By the generalized Cayley

theorem, there is a non-trivial homomorphism ϕ : G −→ Sn. Then kerϕ 6= G. Since G is simple

and Kerϕ is a normal subgroup of G so kerϕ = {e} and ϕ is one-to-one. Thus G ∼= ϕ(G), a

subgroup of Sn. Then ϕ(G) consists of only even permutations or half even and half odd. If ϕ(G) is

of later type then the set of all even permutations in ϕ(G) becomes a subgroup of index 2 and so a

normal subgroup of ϕ(G). This contradicts that G is simple. Thus ϕ(G) ⊆ An and G is isomorphic

to a subgroup of An.
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If in the generalized Cayley theorem, we take H = {e}, then S = {{a} | a ∈ G} and τg is

actually a left translation of G. Thus we can take τg : G −→ G as:

τg(a) = ga for all a ∈ G,

and ψ : G −→ A(G) is a monomorphism. Therefore, G is isomorphic to a subgroup of the permu-

tation group on G. This is the Cayley Theorem.

Now we apply the Cayley Theorem to check simplicity of groups.

Theorem 0.13. Let G be a group of order 2m, where m is an odd integer. Then G has a subgroup

of order m and hence G is not simple.

Proof. We have, by the Cayley’s theorem, that there is a monomorphism ψ : G −→ A(G) given by:

ψ(g) = τg for all g ∈ G,

where τg : G −→ G is defined by: τg(x) = gx for all x ∈ G. Since G is of even order, it contains an

element of order 2, say a. Now τa(x) = ax and τa(ax) = a2x = x implies that the permutation τa

is a product of the transpositions of the form (x ax). It follows from the cancelation property of G

that x 6= ax for all x ∈ G. Since |G| = 2m, so τa is a product of such m transpositions; and hence

τg is an odd permutation. Now define

f : ψ(G) −→ {1,−1}

by

f(σ) =

{
1 if σ is an permutaion

−1 if σ is a odd permutation

for all σ ∈ ψ(G). Then f is a homomorphism. Since ψ(G) contains both odd permutation (viz. τa)

and even permutation (viz. the identity permutation), so f is an epimorphism. Hence, by the first

isomorphism theorem,

ψ(G)/ ker f ' {−1, 1}.

Then |ψ(G)/ ker f | = 2 implies that |G|/| ker f | = 2, that is, 2m/| ker f | = 2 and it follows that

| ker f | = m. Thus ψ(G) contains a normal subgroup ker f of order m, and hence G contains a

normal subgroup of order m.

From this result it follows that no group of order 14, 18, 22 etc is simple.

Now recall that if G is a group of order pn where p is a prime and p ≥ n, then G has a normal

subgroup of order p. Thus no group of such order is simple. Hence no group of order 6, 10, 14, 15,

20, 21 etc. is simple.

From all the above results we have:
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Theorem 0.14. Let 1 ≤ n < 60 be an integer which is not prime. Then no group of order n is

simple.

Now we show that the alternating group A5 is a simple group of order 60. We conclude this

section with the characterization of all simple groups of order 60.

Theorem 0.15. Let G be a group of order 60. If G has more that one Sylow 5-subgroup, then it is

simple.

Proof. Let |G| = 60 and G has more than one Sylow 5-subgroup. Now the number n5 of Sylow

5-subgroups is of the form 5k + 1 for some integer k ≥ 0 and n5 | 60 implies that n5 = 6, since

n5 6= 1.

If possible, assume that G is not simple and H is a non-trivial proper normal subgroup of G.

If 5 | |G|, then H contains a Sylow 5-subgroup P of G. Since H is normal in G, and every

Sylow 5-subgroup of G is a conjugate of P , so H contains all 6 Sylow 5-subgroups of G. Total

number of elements in these 6 Sylow 5-subgroups is 1 + 6 × 4 = 25 which implies that |H| ≥ 25.

Since |H| | 60 and H is proper, so |H| = 30, this contradicts that every group of order 30 has unique

Sylow 5-subgroup. Thus 5 - |H|.
If |H| = 6 or 12, then H has a normal Sylow subgroup which is also normal in G. Thus,

we may assume, by replacing H by its normal subgroup if necessary, that |H| = 2, 3, 4. Then

|G/H| = 30, 20 ore 15 which implies that G/H has a normal subgroup K/H of order 5, where K

is a normal subgroup of G. Now |K| = |K/H| · |H| = 5 · |H| implies that 5 | |K| which contradicts

the preceding paragraph. Thus G is simple.

Corollary 0.16. A5 is simple.

Proof. The subgroups < (12345) > an < (13245) > are distinct Sylow 5-subgroups of A5 and so A5

is simple.

Lemma 0.17. Every simple group of order 60 contains a subgroup of order 12.

Proof. Let G be a group of order 60 = 5 × 3 × 22. Since G is simple, it has more than one Sylow

5-subgroup. In fact G has exactly six Sylow 5-subgroups which contain 6×4 = 24 elements of order

5.

Denote the number of Sylow 2-subgroups of G by n2. Then n2 = 2k+ 1 for some integer k ≥ 0

and n2 | 60 implies that n2 = 1, 3, 5 or 15.

Since G is simple n2 6= 1. Let n2 = 15 and B1, B2, · · · , B15 be the 15 Sylow 2-subgroups of G.

If Bi ∩ Bj = {e} for every i 6= j, then these 15 Sylow 2-subgroups contain 15 × 3 = 45 elements

of order 2 or 4. Thus |G| ≥ 24 + 45 which is a contradiction. Hence there are l, k such that

|Bl ∩ Bk| = 2. Then Bl ∩ Bk is normal in Bl as well as in Bk and so BlBk ⊆ N(Bl ∩ BK). Since

|BlBk| = 4×4
2

= 8, it follows that 8 ≤ |N(Bl ∩ Bk)| which also divides 60. Also |Bl| | |N(Bl ∩ Bk)|.
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Thus |N(Bl ∩ Bk)| = 12, 20 or 60. Since G is simple, N(Bl ∩ Bk)| 6= 60 and by the index theorem,

N(Bl ∩Bk)| 6= 20. Thus N(Bl ∩Bk) is a subgroup of order 12.

Let n2 = 3 or 5, and P be a Sylow 2-subgroup of G. Then n2 = [G : N(P )] implies that

|N(P )| 6= 4. Since P is a subgroup of N(P ), so 4 | |N(P )|. Also |N(P )| | 60. Thus |N(P )| = 12, 20

or 60. Similarly as above, we get |N(P )| = 12.

Thus G must have a subgroup of order 12.

Theorem 0.18. If G is a simple group of order 60, then G ' A5.

Proof. Let G be a simple group of order 60. Then G has a subgroup H of order 12. Hence, by the

generalized Cayley theorem, there is a non-trivial homomorphism.

ψ : G −→ S5.

Since G is simple, kerψ = {e} and ψ is one-to-one. Thus G ' ψ(G). Then ψ(G) ⊆ A5

or half of the elements of ψ(G) even and half odd. In the later case the even permutation of

ψ(G) is a normal subgroup of ψ(G) which contradicts that G is simple. Thus ψ(G) ⊆ A5. Now

|ψ(G)| = |G| = 60 = |A5| implies that ψ(G) = A5. Hence G ' A5.

We also have the following generalization of the above result which we will not prove here. For

a proof, we refer the readers to Abstract Algebra by Dummit and Foote.

Theorem 0.19. For every n ≥ 5, the group An is simple.

1 Summary

• A group G 6= {e} is called simple if its only normal subgroups are the identity subgroup and

the group itself.

• No group of order pq, where p, q are prime integers, is simple.

• (Generalized Cayley theorem) Let G be a group and H be a subgroup of G. If S = {aH|a ∈
G}, then there is a homomorphism ϕ : G −→ A(S), the group of all permutations on S such

that kerϕ ⊆ H.

• (Index Theorem) Let G be a finite group. If G has a proper subgroup H such that [G : H] = m

and |G| - m!, then G is not simple.

• Every finite non-abelian simple group having a subgroup of index n, is isomorphic to a sub-

group of An.

• Let G be a group of order 2m, where m is an odd integer. Then G has a subgroup of order

m and hence G is not simple.
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• Let 1 ≤ n < 60 be an integer which is not prime. Then no group of order n is simple.

• A5 is simple.

• If G is a simple group of order 60, then G ' A5.

• For every n ≥ 5, the group An is simple.
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