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In the Newton-Cotes method (discussed in Module 2 of Chapter 7), the finite interval

of integration [a, b] is divided into n equal subintervals. That is, the arguments xi, i =

0, 1, 2, . . . , n are known and they are equispaced. Also, all the Newton-Cotes formulae

give exact result for the polynomials of degree up to n. It is mentioned that the Newton-

Cotes formulae have some limitations. These formulae are not applicable for improper

integrals.

This drawback can be removed by taking non-equal arguments. But, the question is

how one can choose the arguments? That is, in this case the arguments are unknown.

For this situation, one new kind of quadrature formulae are devised which give exact

result for the polynomials of degree up to 2n− 1. These methods are called Gaussian

quadrature methods, described below.

3.1 Gaussian quadrature

The Gaussian quadrature formula is of the following form∫ b

a
ψ(x)f(x)dx =

n∑
i=1

wif(xi) + E, (3.1)

where xi and wi are respectively called nodes and weights and ψ(x) is called the weight

function, E is the error. Here, the weights wi’s are discrete numbers, but the weight

function ψ(x) is a continuous function and defined on the interval of integration [a, b].

In Newton-Cotes formulae, the weights wi’s were unknown but xi’s were known, while

in Gaussian formulae, both are unknown. By changing the weight function ψ(x) one

can derived different quadrature formulae.

The fundamental theorem of Gaussian quadrature is stated below:

the optimal nodes of the n-point Gaussian quadrature formula are precisely the zeros of

the orthogonal polynomial for the same interval and weight function.

Gaussian quadrature gives exact result for all polynomial up to degree 2n− 1.

Suppose the Gaussian nodes xi’s are chosen by some way. The weights wi’s can be

computed by using Lagrange’s interpolating formula. Let

π(x) =

m∏
j=1

(x− xj). (3.2)
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Then

π′(xj) =
m∏
i=1
i6=j

(xj − xi). (3.3)

Then Lagrange’s interpolating polynomial for m arguments is

φ(x) =

m∑
j=1

π(x)

(x− xj)π′(xj)
f(xj) (3.4)

for arbitrary point x.

Now, from the equation (3.1)∫ b

a
φ(x)ψ(x)dx =

∫ b

a

m∑
j=1

π(x)ψ(x)

(x− xj)π′(xj)
f(xj)dx

=
m∑
j=1

wjf(xj). (3.5)

Comparing, we get

wj =
1

π′(xj)

∫ b

a

π(x)ψ(x)

x− xj
dx. (3.6)

The weights wj are sometimes called the Christofell numbers.

It is obvious that any finite interval [a, b] can be converted to the interval [−1, 1] using

the following linear transformation

x =
b− a

2
t+

b+ a

2
= qt+ p, where q =

b− a
2

and p =
b+ a

2
. (3.7)

Then, ∫ b

a
f(x) dx =

∫ 1

−1
f(qt+ p) q dt. (3.8)

In Gaussian quadrature the limits of the integration are taken as −1 and 1, and it is

possible for any finite interval shown above. Thus, we consider the following Gaussian

integral ∫ 1

−1
ψ(x)f(x)dx =

n∑
i=1

wif(xi) + E. (3.9)
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Depending on the weight function ψ(x) one can generate different Gaussian quadra-

ture formulae. In this module, we consider two Gaussian quadrature formulae.

3.2 Gauss-Legendre quadrature formulae

In this formula, the weight function ψ(x) is taken as 1. Then the quadrature formula

is

∫ 1

−1
f(x)dx =

n∑
i=1

wif(xi) + E. (3.10)

Here, wi’s and xi’s are 2n unknown parameters. Therefore, wi’s and xi’s can be

determined such that the formula (3.10) gives exact result when f(x) is a polynomial

of degree up to 2n− 1.

Let

f(x) = c0 + c1x+ c2x
2 + · · ·+ c2n−1x

2n−1. (3.11)

be a polynomial of degree 2n− 1.

Now, the left hand side of the equation (3.10) is,

∫ 1

−1
f(x)dx =

∫ 1

−1
[c0 + c1x+ c2x

2 + · · ·+ c2n−1x
2n−1]dx

= 2c0 +
2

3
c2 +

2

5
c4 + · · · . (3.12)

When x = xi, equation (3.11) becomes

f(xi) = c0 + c1xi + c2x
2
i + c3x

3
i + · · ·+ c2n−1x

2n−1
i .
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The right hand side of the equation (3.10) is

n∑
i=1

wif(xi) = w1[c0 + c1x1 + c2x
2
1 + · · ·+ c2n−1x

2n−1
1 ]

+w2[c0 + c1x2 + c2x
2
2 + · · ·+ c2n−1x

2n−1
2 ]

+w3[c0 + c1x3 + c2x
2
3 + · · ·+ c2n−1x

2n−1
3 ]

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+wn[c0 + c1xn + c2x
2
n + · · ·+ c2n−1x

2n−1
n ]

= c0(w1 + w2 + · · ·+ wn) + c1(w1x1 + w2x2 + · · ·+ wnxn)

+c2(w1x
2
1 + w2x

2
2 + · · ·+ wnx

2
n) + · · ·

+c2n−1(w1x
2n−1
1 + w2x

2n−1
2 + · · ·+ wnx

2n−1
n ). (3.13)

Hence, equation (3.10) becomes

2c0 +
2

3
c2 +

2

5
c4 + · · ·

= c0(w1 + w2 + · · ·+ wn) + c1(w1x1 + w2x2 + · · ·+ wnxn)

+c2(w1x
2
1 + w2x

2
2 + · · ·+ wnx

2
n) + · · ·

+c2n−1(w1x
2n−1
1 + w2x

2n−1
2 + · · ·+ wnx

2n−1
n ).

Comparing both sides the coefficients of ci’s, and we obtained the following 2n equa-

tions:

w1 + w2 + · · ·+ wn = 2

w1x1 + w2x2 + · · ·+ wnxn = 0

w1x
2
1 + w2x

2
2 + · · ·+ wnx

2
n = 2

3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
w1x

2n−1
1 + w2x

2n−1
2 + · · ·+ wnx

2n−1
n = 0.

(3.14)

Now, the equation (3.14) is a system of non-linear equations containing 2n equations

and 2n unknowns wi and xi, i = 1, 2, . . . , n. Let the solution of these equations be

wi = w∗i and xi = x∗i , i = 1, 2, . . . , n.

Then the Gauss-Legendre quadrature formula is given by∫ 1

−1
f(x)dx =

n∑
i=1

w∗i f(x∗i ). (3.15)
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Unfortunately, the system of equations (3.14) is non-linear and it is very difficult to

find its solution for large n. But, for lower values of n, one can find the exact solution

of the system. Some particular cases are discussed below:

Case I. When n = 1, the Gauss-Legendre quadrature formula becomes∫ 1

−1
f(x)dx = w1f(x1)

and the system of equations is

w1 = 2 and w1x1 = 0, i.e. x1 = 0.

Thus, for n = 1, ∫ 1

−1
f(x)dx = 2f(0). (3.16)

Note the this is a very simple formula to get the value of an integration. This formula

is known as 1-point Gauss-Legendre quadrature formula. It gives an approximate value

of the integration and it gives exact answer when f(x) is a polynomial of degree one.

Case II. When n = 2, then the quadrature formula reduces to∫ 1

−1
f(x)dx = w1f(x1) + w2f(x2). (3.17)

In this case, the system of equations (3.14) becomes

w1 + w2 = 2

w1x1 + w2x2 = 0

w1x
2
1 + w2x

2
2 = 2

3

w1x
3
1 + w2x

3
2 = 0.

(3.18)

The solution of these equations is w1 = w2 = 1, x1 = −1/
√

3, x2 = 1/
√

3. Hence, the

2-point Gauss-Legendre quadrature formula is∫ 1

−1
f(x)dx = f(−1/

√
3) + f(1/

√
3). (3.19)

The above system of equations can also be obtained by substituting f(x) = 1, x, x2

and x3 to the equation (3.17) successively.
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This 2-point quadrature formula gives exact answer when f(x) is a polynomial of

degree up to three.

Case III. When n = 3, then the Gauss-Legendre formula becomes∫ 1

−1
f(x)dx = w1f(x1) + w2f(x2) + w3f(x3). (3.20)

In this case, the system of equations containing six unknowns x1, x2, x3 and w1, w2, w3

is

w1 + w2 + w3 = 2

w1x1 + w2x2 + w3x3 = 0

w1x
2
1 + w2x

2
2 + w3x

3
2 = 2

3

w1x
3
1 + w2x

3
2 + w3x

3
2 = 0

w1x
4
1 + w2x

4
2 + w3x

4
2 = 2

5

w1x
5
1 + w2x

5
2 + w3x

5
2 = 0.

This system of equations can also be obtained by substituting f(x) = 1, x, x2, x3, x4, x5

to the equation (3.20).

Solution of this system of equations is

x1 = −
√

3/5, x2 = 0, x3 =
√

3/5, w1 = 5/9, w2 = 8/9, w3 = 5/9.

Hence, in this case, the Gauss-Legendre quadrature formula is∫ 1

−1
f(x)dx =

1

9
[5f(−

√
3/5) + 8f(0) + 5f(

√
3/5)]. (3.21)

This is known as 3-point Gauss-Legendre quadrature formula.

In this way, one can determine Gauss-Legendre quadrature formulae for higher values

of n.

Note that the system of equations (3.14) is non-linear with respect to xi’s, but if xi’s

are known, then this system becomes linear one.

It is very interesting that the nodes xi’s, i = 1, 2, . . . , n are the zeros of the nth degree

Legendre’s polynomial

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n].
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This is a well known orthogonal polynomial and it is obtained from the following recur-

rence relation:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (3.22)

where P0(x) = 1 and P1(x) = x.

Some lower order Legendre polynomials are

P0(x) = 1

P1(x) = x

P2(x) = 1
2(3x2 − 1)

P3(x) = 1
2(5x3 − 3x)

P4(x) = 1
8(35x4 − 30x2 + 3).

(3.23)

It can be verified that the roots of the equation Pn(x) = 0 are the nodes xi’s of the

n-point Gauss-Legendre quadrature formula. Finding of zeros of lower degree Gauss-

Legendre polynomial is easy than finding the solution of the system of equations (3.14).

For example, the roots of the equation P2(x) = 0 are ±1/
√

3 and these are the nodes

for 2-point Gauss-Legendre quadrature formula. Similarly, the roots of the equation

P3(x) = 0 are 0,±
√

3/5 and these are the nodes of 3-point formula, and so on.

Again, it is proved that the weights wi’s can be determined from the following equa-

tion

wi =
2

(1− x2i )[P ′n(xi)]2
. (3.24)

It can be shown that the error of this formula is

E =
22n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), −1 < ξ < 1. (3.25)

The nodes and weights for some lower values of n are listed in Table 3.1.

Note 3.1 The Gauss-Legendre quadrature generates several formulae for different val-

ues of n. These formulae are known as n-point formula, where n = 1, 2, . . ..
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n node xi weight wi order of

truncation error

2 ±0.57735027 1.00000000 f (4)(ξ)

3 0.00000000 0.88888889 f (6)(ξ)

±0.77459667 0.55555556

4 ±0.33998104 0.65214515 f (8)(ξ)

±0.86113631 0.34785485

5 0.00000000 0.56888889

±0.53846931 0.47862867 f (10)(ξ)

±0.90617985 0.23692689

6 ±0.23861919 0.46791393

±0.66120939 0.36076157 f (12)(ξ)

±0.93246951 0.17132449

Table 3.1: Values of xi and wi for Gauss-Legendre quadrature

Example 3.1 Find the value of

∫ 1

0
x2 sinx dx by Gauss-Legendre formula for n =

2, 4, 6. Also, calculate the absolute errors.

Solution. To apply the Gauss-Legendre formula, the limits are transferred to −1, 1 by

substituting x =
1

2
u(1− 0) +

1

2
(1 + 0) =

1

2
(u+ 1).

Then,

I =

∫ 1

0
x2 sinx dx =

∫ 1

−1

1

8
(u+ 1)2 sin

(u+ 1

2

)
du =

1

8

n∑
i=1

wif(ui)

where f(xi) = (xi + 1)2 sin
(xi + 1

2

)
.

For the two-point formula (n = 2)

x1 = −0.57735027, x2 = 0.57735027, w1 = w2 = 1.

Then I = 1
8 [1× 0.037469207 + 1× 1.7650614] = 0.22531632.

For the four-point formula (n = 4)

x1 = −0.33998104, x2 = −0.86113631, x3 = −x1, x4 = −x2,
w1 = w3 = 0.65214515, w2 = w4 = 0.34785485.
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Then,

I =
1

8
[w1f(x1) + w3f(x3) + w2f(x2) + w4f(x4)]

=
1

8
[w1{f(x1) + f(−x1)}+ w2{f(x2) + f(−x2)}]

=
1

8
[0.65214515× (0.14116516 + 1.1149975) + 0.34785485× (0.0013377874 + 2.77785)]

= 0.22324429.

For the six-point formula (n = 6)

x1 = −0.23861919, x2 = −0.66120939, x3 = −0.93246951, x4 = −x1,
x5 = −x2, x6 = −x3, w1 = w4 = 0.46791393, w2 = w5 = 0.36076157,

w3 = w6 = 0.17132449.

Then,

I =
1

8
[w1{f(x1) + f(−x1)}+ w2{f(x2) + f(−x2)}+ w3{f(x3) + f(−x3)}]

=
1

8
[0.46791393× (0.2153945 + 0.89054879) + 0.36076157× (0.019350185 + 2.0375335)

+0.17132449× (0.00015395265 + 3.0725144)]

= 0.22324427.

The exact value is 0.22324428.

The following table gives a comparison among the different Gauss-Legendre formulae.

n Exact value Gauss formula Error

2 0.22324428 0.22531632 2.07× 10−3

4 0.22324428 0.22324429 0.01× 10−6

6 0.22324428 0.22324427 0.01× 10−6

By considering the weight function ψ(x) = (1 − x2)−1/2, we obtain another type of

Gaussian quadrature known as Gauss-Chebyshev quadrature, discussed in next section.

3.3 Gauss-Chebyshev quadrature formulae

Gauss-Chebyshev quadrature is also known as Chebyshev quadrature. Its weight

function is taken as ψ(x) = (1− x2)−1/2. The general form of this method is∫ 1

−1

1√
1− x2

f(x)dx =
n∑
i=1

wif(xi) + E, (3.26)
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where E is the error.

This formula also contains 2n unknown parameters. So, as per Gaussian quadrature,

this method gives exact answer for polynomials of degree up to 2n− 1.

For n = 3 the equation (3.26) becomes∫ 1

−1

1√
1− x2

f(x)dx = w1f(x1) + w2f(x2) + w3f(x3). (3.27)

Since the method gives exact value for the polynomials of degree up to 2n − 1. i.e.

up to 5. Therefore, for f(x) = 1, x, x2, x3, x4, x5 the following equations are obtained

from (3.27).

w1 + w2 + w3 = π

w1x1 + w2x2 + w3x3 = 0

w1x
2
1 + w2x

2
2 + w3x

2
3 = π

2

w1x
3
1 + w2x

3
2 + w3x

3
3 = 0

w1x
4
1 + w2x

4
2 + w3x

4
3 = 3π

8

w1x
5
1 + w2x

5
2 + w3x

5
3 = 0.

Solution of this system of equations is x1 =
√

3/2, x2 = 0, x3 = −
√

3/2, w1 = w2 =

w3 = π/3.

Thus the formula (3.27) becomes∫ 1

−1

1√
1− x2

f(x)dx =
π

3

[
f(
√

3/2) + f(0) + f(−
√

3/2)
]
. (3.28)

This is known as 3-point Gauss-Chebyshev quadrature formula.

Like Gauss-Legendre quadrature formulae, many Gauss-Chebyshev quadrature for-

mulae can be derived for different values of n.

In Gauss-Chebyshev quadrature formulae, the nodes xi, i = 1, 2, . . . , n, are the zeros

of the Chebyshev polynomials

Tn(x) = cos(n cos−1 x). (3.29)

That is, the nodes xi’s are given by equation

xi = cos

(
(2i− 1)π

2n

)
, i = 1, 2, . . . , n. (3.30)
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The weights wi’s are same for all values of i and these are given by

wi = − π

Tn+1(xi)T ′n(xi)
=
π

n
, i = 1, 2, . . . , n. (3.31)

Using these results, the 1-point Gauss-Chebyshev quadrature formula is deduced

below:

For n = 1, x1 = cos π2 = 0 and w1 = π. That is,

∫ 1

−1

1√
1− x2

f(x)dx = w1f(x1) = πf(0). (3.32)

For n = 2, xi = cos(2i− 1)π4 , i = 1, 2.

Thus,

x1 = cos
π

4
=

1√
2

and x2 = cos
3π

4
= − 1√

2
.

The weights are w1 = w2 =
π

2
.

Thus, 2-point Gauss-Chebyshev quadrature formula is∫ 1

−1

1√
1− x2

f(x)dx = w1f(x1) + w2f(x2) (3.33)

=
π

2

[
f
( 1√

2

)
+ f

(
− 1√

2

)]
. (3.34)

The error in Gauss-Chebyshev quadrature is

E =
2π

22n(2n)!
f (2n)(ξ), −1 < ξ < 1. (3.35)

The more general Gauss-Chebyshev quadrature formula is then∫ 1

−1

f(x)dx√
1− x2

=
π

n

n∑
i=1

f
[

cos
{(2i− 1)

2n
π
}]

+
2n

22n(2n)!
f (2n)(ξ). (3.36)

In Table 3.2, the values of nodes and weights for first few Gauss-Chebyshev quadrature

formulae are provided.
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n node xi weight wi order of

truncation error

2 ±0.7071068 1.5707963 f (4)(ξ)

3 0.0000000 1.0471976

±0.8660254 1.0471976 f (6)(ξ)

4 ±0.3826834 0.7853982

±0.9238795 0.7853982 f (8)(ξ)

5 0.0000000 0.6283185

±0.5877853 0.6283185 f (10)(ξ)

±0.9510565 0.6283185

Table 3.2: Nodes and weights for Gauss-Chebyshev quadrature formulae

Example 3.2 Find the value of

∫ 1

0

1

1 + x2
dx using Gauss-Chebyshev four-point for-

mula.

Solution. Let f(x) =

√
1− x2

1 + x2
. Here x1 = −0.3826834 = x2,

x3 = −0.9238795 = −x4 and w1 = w2 = w3 = w4 = 0.7853982.

Then

I =

∫ 1

0

1

1 + x2
dx =

1

2

∫ 1

−1

1

1 + x2
dx =

1

2

∫ 1

−1

f(x)√
1− x2

dx

=
1

2
[w1f(x1) + w2f(x2) + w3f(x3) + w4f(x4)]

=
1

2
× 0.7853982[f(x1) + f(x2) + f(x3) + f(x4)]

=
1

2
× 0.7853982[2× 0.8058636 + 2× 0.2064594] = 0.7950767,

while the exact value is π/4 = 0.7853982. Thus, the absolute error is 0.0096785.
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