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Module-2: Stereographic Projection

1 Euler’s Formula

By assuming that the infinite series expansion

ex = 1 + x+
x2

2!
+
x3

3!
+ ....

of elementary calculus holds when x = iθ, we can arrive at

eiθ = cos θ + i sin θ,

which is called Euler’s formula. In general, we define

ez = ex+iy = ex.eiy = ex(cos y + i sin y).

The n-th Root of Unity

The solutions of the equation zn = 1 where n is a positive integer are called the n-th root

of unity and are given by

z = cos
2kπ

n
+ i sin

2kπ

n
= e

2kπi
n ,

k = 0, 1, 2, ..., n− 1. If we put ω = cos 2π
n

+ i sin 2π
n

= e
2πi
n , the n roots are 1, ω, ω2, ... ,

ωn−1.

Geometrically they represent the n vertices of a regular polygon of n sides inscribed

in a circle of radius one having center at the origin. The circle has the equation | z |= 1

and is often called the unit circle.

2 Point at Infinity

The linear transformation z → w = f(z), where

f(z) = λz + µ, λ 6= 0,
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is a one-one mapping of the finite complex plane onto itself. This is not true of the

inversion map z → w = 1/z. Writing into polar forms, we have z = reiθ and w = ρeiφ,

where ρ = 1/r. Therefore, the points close to the origin in the z-plane, r ≈ 0, are mapped

onto points far away from the origin in the w-plane. All the points inside a disk of small

radius ε, in the z-plane, are mapped onto points outside a disk of large radius 1/ε, in the

w-plane. As ε → 0, the disk in the z-plane shrinks to the origin and there is no image

of z = 0 in the w-plane. Similarly, as the point z moves farther and farther away from

the origin, its image in the w-plane moves closer and closer to the origin in the w-plane,

but there is no point in the z-plane which can be assigned w = 0 as the image under

inversion.

It turns out to be useful to introduce the concept of a point at infinity, or z = ∞,

as a formal image of z = 0 under the inversion map w = 1/z. The point z = 0 can

then be regarded as the image of the point at infinity. The use of z = ∞ will always

be understood in terms of a limiting process w → 0, where w = 1/z. To examine the

behavior of f(z) at z =∞, it suffices to let z = 1
w

and examine the behavior of f( 1
w

) at

w = 0. For example, we say that the function f(z) = 2z−1
z−3 tends to 2 as z →∞, because

f(1/w) = 2−w
1−3w tends to 2 as w → 0.

3 Extended Complex Plane

By the extended complex number system, we shall mean the complex plane C together

with a symbol ∞ which satisfies the following properties :

(a) If z ∈ C, then we have z +∞ = z −∞ =∞ , z/∞ = 0.

(b) If z ∈ C, but z 6= 0, then z.∞ =∞ and z/0 =∞.

(c) ∞+∞ =∞.∞ =∞

(d) ∞/z =∞ (z 6=∞).

The set C ∪ {∞} is called the extended complex plane and is denoted by C∞.

The nature of Argand plane at the point at infinity is made much clear by the use of

Riemann’s spherical representation of complex numbers, which depends on Stereographic

Projection.
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Stereographic Projection

We consider the Argand plane C and a unit sphere Ŝ tangent to C at z = 0. The diameter

NS is perpendicular to C and we call the points N and S the north and south poles of

Ŝ respectively. Now we establish a one-one correspondence between the points on the

sphere and the points on the plane. To each point A in the plane there corresponds a

unique point A′ on the sphere. The point A′ is the point where the line joining A to the

north pole N intersects the sphere. Conversely, corresponding to each point A′ on the

sphere (except the north pole) there exists a unique point A in the plane. By defining

that the north pole N corresponds to the point at infinity, we can say that there exists a

one-one correspondence between the points on the sphere and the points in the extended

complex plane. This sphere is known as Riemann sphere and the correspondence is known

as stereographic projection, (see Fig. 1.1). We consider the sphere as

Fig. 1.1:

x21 + x22 + x23 = 1,

the plane of projection as x3 = 0 and let (0, 0, 1) be the coordinate of N. For any point
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A′ = (x1, x2, x3) on the sphere we have point A = (x, y, 0) in the x3-plane where the

line NA′ meets the plane of projection. Obviously, the points (0, 0, 1), (x1, x2, x3) and

(x, y, 0) are collinear and the equation of the line is

x1
x

=
x2
y

=
x3 − 1

−1
.

From this we get

x =
x1

1− x3
, y =

x2
1− x3

.

Therefore z = x+ iy = x1+ix2
1−x3 . From this we get

| z |2 =
x21 + x22

(1− x3)2
=

1 + x3
1− x3

,

and hence

x3 =
| z |2 −1

| z |2 +1
.

Also we see that

z + z

| z |2 +1
= x1 and

z − z
i(| z |2 +1)

= x2.

In this way we can establish an one-one correspondence between the points in the extended

complex plane and points on the sphere.

Example 1.1. Find all the roots of the equation z4 − (1− z)4 = 0.

Solution. Let w = z
1−z . Then the given equation becomes

w4 = 1 = cos 2kπ + i sin 2kπ,

where k is an integer. Therefore w = cos 2kπ
4

+i sin 2kπ
4
, k = 0, 1, 2, 3. Again from w = z

1−z

we get z = w
w+1

. Hence z =
cos 2kπ

4
+i sin 2kπ

4

cos 2kπ
4

+i sin 2kπ
4

+1
= e

2kπi
4

e
2kπi
4 +1

, k = 0, 1, 2, 3.

Example 1.2. Find all the values of z for which z5 = 32 and locate these values in the

Argand plane.

Solution. z5 = 32 = 32(cos 2kπ + i sin 2kπ), k = 0,±1,±2, ... This gives

z = 2

[
cos

(
2kπ

5

)
+ i sin

(
2kπ

5

)]
, k = 0, 1, 2, 3, 4.
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If k = 0, then z = z1 = 2[cos 0 + i sin 0] = 2.

If k = 1, then z = z2 = 2[cos 2π
5

+ i sin 2π
5

].

If k = 2, then z = z3 = 2[cos 4π
5

+ i sin 4π
5

].

If k = 3, then z = z4 = 2[cos 6π
5

+ i sin 6π
5

].

If k = 4, then z = z5 = 2[cos 8π
5

+ i sin 8π
5

].

These are the only roots of the given equation. The values of z are indicated in the figure

(see Fig. 1.2). Note that they are equally spaced along the circumference of a circle having

center at the origin and the radius 2. Another way of saying this is that the roots are

represented by the vertices of a regular polygon.

Fig. 1.2:

Example 1.3. Find all the roots of (−8− 8
√

3i)
1
4 and exhibit them geometrically.

Solution.

(−8− 8
√

3i)
1
4 =

[
16

(
cos

(
2kπ +

4π

3

)
+ i sin

(
2kπ +

4π

3

))] 1
4

= 2

(
cos

(
2kπ + 4π

3

4

)
+ i sin

(
2kπ + 4π

3

4

))
,

k = 0, 1, 2, 3. Therefore all the four roots are

z1 = 2(cosπ/3 + i sin π/3); z2 = 2(cos 5π/6 + i sin 5π/6);

z3 = 2(cos 4π/3 + i sin 4π/3); z4 = 2(cosπ/6− i sinπ/6);

or 1 + i
√

3, −
√

3 + i, −1− i
√

3,
√

3− i.
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The roots lie at the vertices of a square inscribed in a circle of radius 2 centered at

the origin, also are equally spaced with difference of angle π/2 (see Fig. 1.3).

Fig. 1.3:

Example 1.4. Establish the relation :

n

2n−1
=

n−1∏
k=1

sin

(
kπ

n

)
, n ≥ 2.

Solution. Let 1, ρ1, ρ2, ... , ρn−1 be the n roots of unity, where ρk = e
2kπi
n , k =

1, 2, ..., n− 1. Then

zn − 1 = (z − 1)(z − ρ1)(z − ρ2)...(z − ρn).

Dividing both sides by z − 1 and letting z → 1, we obtain

n = (1− ρ1)(1− ρ2)...(1− ρn−1).

Taking conjugate of both sides, we obtain

n = (1− ρ1)(1− ρ2)...(1− ρn−1).
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Therefore

n2 =
n−1∏
k=1

(1− ρk)(1− ρk)

=
n−1∏
k=1

(1− e
2kπi
n )(1− e−

2kπi
n )

=
n−1∏
k=1

2

(
1− cos

2kπ

n

)

=
n−1∏
k=1

4 sin2

(
kπ

n

)

= 22(n−1)
n−1∏
k=1

sin2

(
kπ

n

)
.

Taking the nonnegative square root of both sides we obtain the required result.

Example 1.5. For any two nonzero complex numbers z1 and z2 prove that

| z1 + z2 | |
z1
| z1 |

+
z2
| z2 |

| ≤ 2(| z1 | + | z2 |).

Solution. We have

| z1 + z2 | |
z1
| z1 |

+
z2
| z2 |

|

= | z1 + z2 | |
z1 | z2 | +z2 | z1 |
| z1 || z2 |

|

= | z1 + z2 |
| (z1 | z2 | +z2 | z1 |) |

| z1z2 |

≤ | z1 + z2 |
| z1z2 |

(| z1 | z2 || + | z2 | z1 ||)

= 2
| z1 + z2 |
| z1z2 |

| z1z2 |

= 2 | z1 + z2 |

≤ 2(| z1 | + | z2 |).
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