Paper No. : 04 Paper Title: Unit Operations in Food processing Module –7: Heat Radiation

Gateway

Introduction

- Emission of energy in the form of electromagnetic waves
- Depends on body temperature
- Can travel in complete vacuum
- Rate of heat transfer is faster
- Example: Baking, sunshine, Boiler

Surface characteristics

The radiation energy is presented as energy flux (W/m²)
Polished surface reflects all the incident radiation ρ=1
Black body absorbs all the incident radiation, So, α = 1

Types of Body

Black Body

A body is said to be perfectly black if it absorbs all the incident radiation to it.

absorptivity, $\alpha = 1$ emissivity, $\varepsilon = 1$ So, $\alpha = \varepsilon = 1$

Gray Body

A body is said to be gray if the monochromatic properties are constant at all wavelengths.

absorptivity, $\alpha < 1$ emissivity, $\varepsilon < 1$

Opaque Body

A body is said to be opaque if no incident radiation gets transmitted through the body.

$$\alpha + \rho = 1$$

Emissivity

- Emissivity is the ratio of radiant heat flux of a real body to that of a perfect black body
- Black body is a perfect emitter
- Energy emitted by a real surface is always less than energy emitted by a black surface at same temperature

Emissivity, $\mathcal{E} = \frac{E}{E_0}$ Radiation of a blackbody

Kirchhoff's Law

uate CI

Emissivity, $\varepsilon = \frac{E}{E_0}$

Absorptivity, $\alpha = \frac{E}{E_0}$

At thermal equilibrium, $\varepsilon = \alpha$

So, Kirchhoff's law states that a body at constant temperature which is in equilibrium with its surroundings, the amount of energy absorbed by radiation is exactly same as that emitted.

Stefan-Boltzmann Law

It states that the total emissive power is the total radiation energy per unit area leaving a surface with temperature T over all wavelengths.

Radiation power (Watt) $\frac{q}{A} = \sigma \varepsilon T^4$ Absolute temperature (K)

Surface Area (m²)

Stefan-Boltzmann constant (5.669 X 10⁻⁸ W/m²K⁴)

For a perfectly black body,

 $\frac{q}{A} = \sigma T^4$

Radiation between two surfaces

 $\epsilon_{1,}T_{1}$

 $q_{1\rightarrow 2} = \begin{bmatrix} radiation \ leaving \ surface 1 \\ that \ strikes \ surface 2 \end{bmatrix} = \begin{bmatrix} radiation \ leaving \ surface 2 \\ that \ strikes \ surface 1 \end{bmatrix}$

ε_{2,} Τ₂

 $q_{12} = \sigma A K \left[T_1^4 - T_2^4 \right]$

Radiation from the surrounding

Example: Heat transfer from the surrounding to the bread loaf inside a baking oven

- $q_{r} = h_{r} A (T_{1} T_{2})$ $q_{12} = \sigma A (T_{1}^{4} T_{2}^{4})$

$$h_r = \sigma \frac{\left(T_1^4 - T_2^4\right)}{T_1 - T_2}$$
$$q_{total} = q_r + q_c$$

Radiating heat transfer medium

- 1. Gases with high concentration
- 2. Asymmetric molecules like H2O, CO2, CO, SO2 etc.
- 3. Absoption and emission depends on the gas

concentration

TEN

THANK YOU

Gatewayto