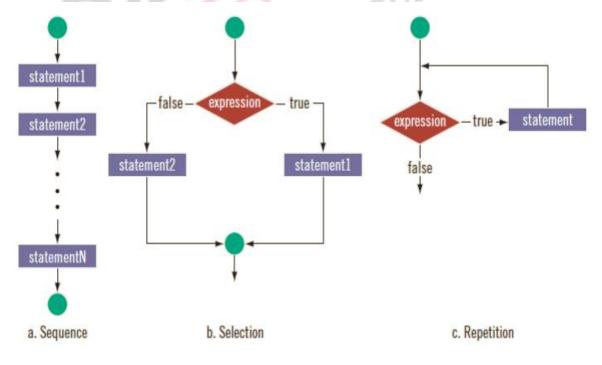
e-PG Pathshala

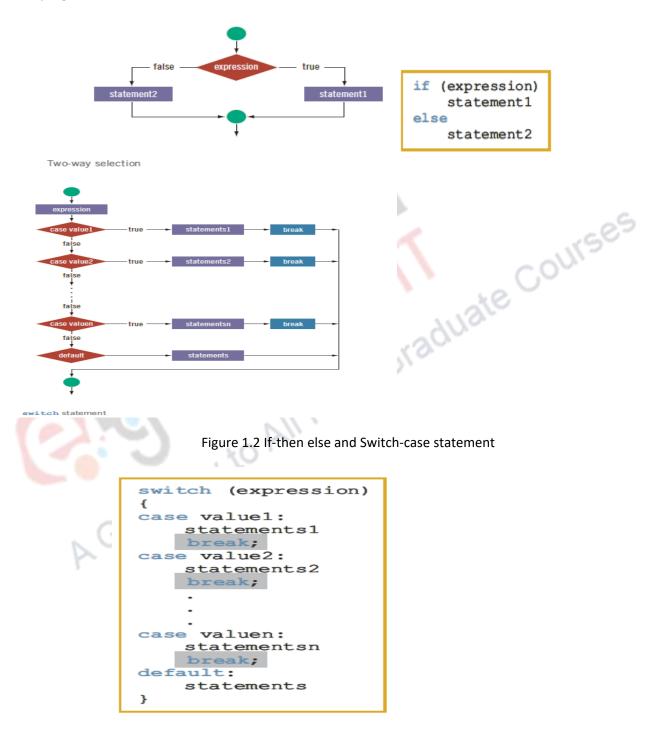
Subject : Computer Science

Paper: Embedded System Module: Programming Embedded Systems in C Module No: CS/ES/9 Quadrant 1 – e-text


In this module, we will discuss about the embedded C programming for microcontroller. C programs for time delay and I/O operations will be discussed. Programs for handling the I/O ports and I/O bit manipulation will also be written and discussed.

1.Need for programming 8051 in embedded C

There are several reasons for using a high-level language such as C to program the 8051 microcontroller. It is easier and less time consuming to write programs in Embedded C than Assembly. C is easier to modify and update. We can also use code available in function libraries. Also, C code is portable to other microcontrollers with little or no modification.


1.1 Flow of Execution

We will first look at a few common structures available in Embedded C. Figure 1.1 shows the flow for sequential execution , selection procedure, and looping structure.

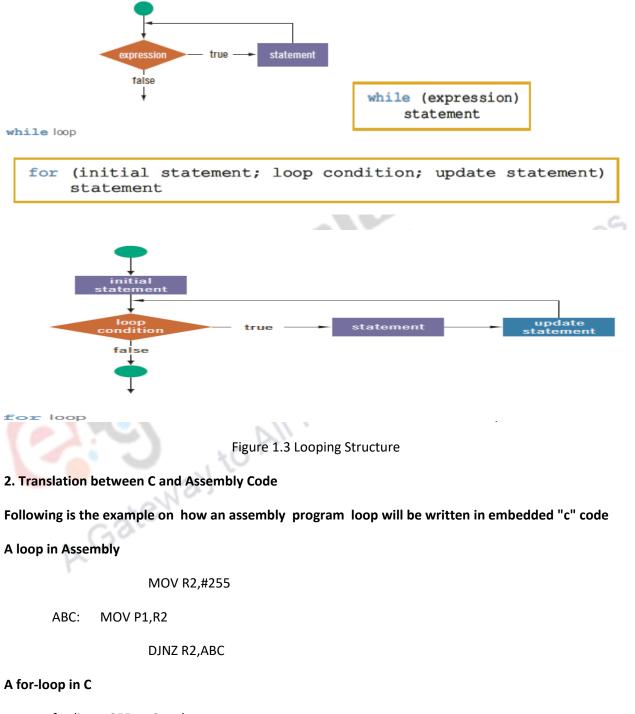

1.2 If and Switch statement(selection) structure

Fig1.2 shows the If -then-else and switch - case statement. Like normal C programming in embedded C also programmers will use if statements and switch case statements.

1.3 While and for looping(Repetition) structure

For looping fig 1.3 shows the structure of while loop and for looping structure .

for (int z=255; z>0; z--)

P1=z;

3. Data Type and Time Delay in 8051 C

Specific C data types for 8051 can help programmers to create smaller hex files. They are

Unsigned char Signed char Unsigned int Signed int Sbit (single bit) Bit and sfr

Figure 1.4 shows the number of bits needed by each data type. The character data type is the most natural data choice because 8051 is an 8-bit microcontroller. The C compiler will allocate RAM space for the variables based on their data type - char, int, bit etc.

Size in Bits	Data Range/Usage	
8-bit	0 to 255	
8-bit	-128 to +127	
16-bit	0 to 65535	
16-bit	-32,768 to +32,767	
1-bit	SFR bit-addressable only	
1-bit	RAM bit-addressable only	
8-bit	RAM addresses 80 - FFH only	
	8-bit 8-bit 16-bit 16-bit 1-bit 1-bit	

Figure 1.4 Some Widely used Data types for 8051 C

3.1 Unsigned and Signed Char

Unsigned Char:

The most widely used data type for the 8051 is unsigned char. It uses 8-bits. The range of values taken by unsigned char is 0-255(00-FFH).

In a microcontroller setup, we use unsigned char for the following:

- \checkmark To set counter value
- \checkmark To handle a string of ASCII characters

For toggling ports. \checkmark

Signed Char:

Signed char is an 8-bit data type. It uses a 2's complement representation. The range of unsigned char -128 to +127 (00-FFH). It is used for the following purposes: is

> \checkmark To present a given quantity such as temperature which can take both positive and negative values. .

Following are examples of programs using unsigned and signed char.

Example 1 : Write an 8051 C program to send values 00 – FF to port P1.

Solution:

Graduate Courses #include <reg51.h> // library code for changing the following code to 8051 assembly code void main(void)

{

```
unsigned char z;
for (z=0;z<=255;z++)
P1=z;
```

Write an 8051 C program to send hex values for ASCII characters of 0, 1, 2, 3, 4, 5, A, B, C, and D to port P1.

Solution:

```
NBY
#include <reg51.h>
void main(void)
{
unsigned char mynum[]="012345ABCD";
unsigned char z;
for (z=0;z<=10;z++)
P1=mynum[z];
}
```

Write an 8051 C program to send values of -4 to +4 to port P1.

Solution:

//Signed numbers #include <reg51.h>

```
void main(void)
```

```
{
```

```
char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};
signed char z;
for (z=0;z<=8;z++)
P1=mynum[z];
```

}

4. Integer

The unsigned int is a 16-bit data type. It takes a value in the range of 0 to 65535 (0000 – FFFFH). It is used to

- ▶ Define 16-bit variables such as memory addresses.
- Set counter values of more than 256.

Since registers and memory accesses are in 8-bit chunks, the misuse of int variables will result in a larger hex file.

Signed int is a 16-bit data type. It uses the most significant bit D15 to represent the sign : - or + . We have 15 bits for the magnitude of the number, giving a range from –32768 to +32767.

Following code shows examples for using unsigned bit and sbit.

Write an 8051 C program to toggle bit D0 of the port P1 (P1.0) 50,000 times. way to All Post

Solution:

```
#include <reg51.h>
sbit MYBIT=P1^0;
void main(void)
{
unsigned int z;
for (z=0;z<=50000;z++
{
MYBIT=0;
MYBIT=1;
}
}
```

5. Time Delay

There are two ways to create a time delay in 8051 C : (i) using the 8051 timer and (ii) using a simple forloop. When using a loop to create the time delay, there are three factors that can affect the accuracy of the time delay. They are: (i) Crystal frequency of the 8051 system, (ii) 8051 machine cycle timing and (iii) Compiler used for 8051 C.

Following are example programs for creating time delay:

Write an 8051 C program to toggle bits of P1 continuously forever with some delay.

Solution:

```
//Toggle P1 forever with some delay in between "on" and "off"
```

```
#include <reg51.h>
void main(void)
{
unsigned int x;
for (;;) //repeat forever
       {
        p1=0x55;
        for (x=0;x<40000;x++); //delay size unknown
        p1=0xAA;
        for (x=0;x<40000;x++);
        }
```

```
}
```

uith a Write an 8051 C program to toggle bits of P1 ports continuously with a 250 ms delay.

Courses

Solution:

```
#include <reg51.h>
void MSDelay(unsigned int);
void main(void)
```

{

```
while (1) //repeat forever
{
p1=0x55;
MSDelay(250);
p1=0xAA;
MSDelay(250);
}
}
```

```
void MSDelay(unsigned int itime)
{
unsigned int i,j;
for (i=0;i<itime;i++)</pre>
for (j=0;j<1275;j++);
```

```
}
```

The operating modes of the 8051 can be changed by manipulating the values of the 8051's Special Function Registers (SFRs). SFRs are accessed as if they were normal Internal RAM. The only difference is that Internal RAM is from address 00h through 7Fh whereas SFR registers exist in the address range of 80h through FFh.Each SFR has an address (80h through FFh) and a name.

Write an 8051 C program to toggle all the bits of P0, P1, and P2 continuously with a 250 ms delay. Use the sfr keyword to declare the port addresses.

Solution:

```
//Accessing Ports as SFRs using sfr data type
sfr P0=0x80;
sfr P1=0x90;
                            to All Post Graduate Courses
sfr P2=0xA0;
void MSDelay(unsigned int);
void main(void)
{
while (1)
      {
      P0=0x55;
      P1=0x55;
      P2=0x55;
      MSDelay(250);
      PO=0xAA;
      P1=0xAA;
      P2=0xAA;
      MSDelay(250);
      }
}
```

6. I/O programming in 8051 C

The Figure 1.5 shows the address for the SFR registers. Through which you can access individual bit of SFR also.

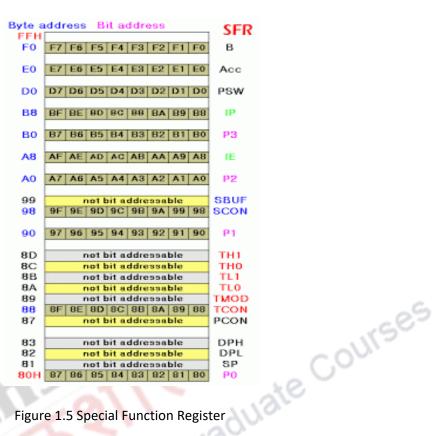


Figure 1.5 Special Function Register

105

Following program is an example for the use of sbit and name of SFR

#include <reg51.h> Sbit MYBIT = P1^5; //D5 of P1 Use sbit to declare the bit of SFR and declare Sbit MYBIT = 0x95; //D5 of P1 •reg51. h is not necessary.

Following figure 1.6 shows 8051 256 Byte RAM

Byte a	iddress Bit address		ddress Bit address	SFR			
7FH	General	FFH					
	purpose	FO	F7 F6 F5 F4 F3 F2 F1 F0	в			
30	RAM	50					
2F	7F 7E 7D 7C 7B 7A 79 78	EO	E7 E6 E5 E4 E3 E2 E1 E0	Acc			
2E	77 76 75 74 73 72 71 70	DO	D7 D6 D5 D4 D3 D2 D1 D0	PSW			
2D	6F 6E 6D 6C 6B 6A 69 68		57 50 53 54 55 52 51 55	100			
2C	67 66 65 64 63 62 61 60	B8	BF BE 80 8C 88 BA 89 B8	IP			
28	5F 5E 5D 5C 5B 5A 59 58		Saddi Sadad Sebeli Indial Sadad Sadad Sadad Sadad				
2A	57 56 55 54 53 52 51 50	BO	B7 B6 B5 B4 B3 B2 B1 B0	P3			
29	4F 4E 4D 4C 4B 4A 49 48						
28	47 46 45 44 43 42 41 40	A8	AF AE AD AC AB AA A9 A8	IE			
27	3F 3E 3D 3C 3B 3A 39 38						
26	37 36 35 34 33 32 31 30	A0	A7 A6 A5 A4 A3 A2 A1 A0	P2			
25	2F 2E 2D 2C 2B 2A 29 28						
24	27 26 25 24 23 22 21 20	99	not bit addressable	SBUF			
23	1F 1E 1D 1C 1B 1A 19 18	98	9F 9E 9D 9C 9B 9A 99 98	SCON			
22	17 16 15 14 13 12 11 10						
21	0F 0E 0D 0C 0B 0A 09 08	90	97 96 95 94 93 92 91 90	P1			
20	07 06 05 04 03 02 01 00						
1 F		8D	not bit addressable	TH1			
	Bank 3	8C	not bit addressable	THO			
18		8B	not bit addressable	TL1			
17		8A	not bit addressable	TLO			
	Bank 2	89	not bit addressable	TMOD			
10		88	8F 8E 8D 8C 8B 8A 89 88	TCON	0		
0F		87	not bit addressable	PCON	COULSE		
	Bank 1				.(")"		
08		83	not bit addressable	DPH			
07	Bank 0	82 81	not bit addressable	DPL SP	~ OV		
оон	(R0 ~ R7)	80H	not bit addressable 87 86 85 84 83 82 81 80	PO	\sim		
004		80H					
Figure 1 6 8051 256 byte BAM							
Figure 1.6 8051 256 byte RAM							

Figure 1.6 8051 256 byte RAM

Write an 8051 C program to toggle all the bits of P0, P1, and P2 continuously with a 250 ms delay. Use the sfr keyword to declare the port addresses. pos

Solution:

```
//Accessing Ports as SFRs using sfr data type
sfr P0=0x80;
sfr P1=0x90;
sfr P2=0xA0;
void MSDelay(unsigned int);
void main(void)
{
while (1)
{
P0=0x55;
P1=0x55;
P2=0x55;
MSDelay(250);
P0=0xAA;
P1=0xAA;
P2=0xAA;
MSDelay(250);
```

} } **Access Single Bit of SFR**

Way to access a single bit of SFR

Use sbit and name of SFR

#include <reg51.h>

Sbit MYBIT = P1^5; //D5 of P1

Use sbit to declare the bit of SFR and declare by yourself

Sbit MYBIT = 0x95; //D5 of P1

•reg51. h is not necessary.

way to All Post Graduate Courses Write an 8051 C program to turn bit P1.5 on and off 50,000 times.

Solution

```
Sbit MYBIT = 0x95;// P1^5
```

void main(void) { unsigned intz; for (z=0;z<50000;z++)

```
{
MYBIT=1;
MYBIT=0;
}
```

} This program is similar to Example for unsigned int.

Access Bit-addressable RAM

You can use bit to access one bit of bit-addressable section of the data RAM space 20H-2FH.

#include <reg51.h> Sbit inbit= P1^0; bit membit;//C compiler assign a RAM space for mybit membit= inbit; //Read P1^0 to RAM

Write an 8051 C program to get the status of bit P1.0, save it, and send it to P2.7 continuously.

Solution:

```
#include <reg51.h>
sbit inbit= P1^0;
sbit outbit= P2^7;
bit membit;
void main(void)
{
while(1) { //repeat forever
membit= inbit;
outbit= membit
}
}
7.Summary
```

In this lecture we discussed C data type for 8051. Discussed C programs for time delay and I/O operations. Written C code for I/O bit and I/O port manipulations.

8.References

 Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems Using Assembly and C -Second Edition", NewDelhi (2000).

20