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 To discuss about Euler’s and Fermat’s Theorem.  

 To discuss various examples Euler’s and Fermat’s methods. 

 To discus about generating primes 

 To discuss about  Primality testing and different Algorithms with the various 
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10.1  Fermat's and Euler's Theorems 

Two theorems that play important roles in public-key cryptography are Fermat's 

theorem and Euler's theorem. 

Fermat's Theorem 

This is sometimes referred to as Fermat's little theorem. 

First version 

Fermat's theorem states the following: If p is prime and a is a positive integer not 

divisible by p, then 

 

Proof: Consider the set of positive integers less than p:{1,2,..., p 1} and multiply 

each element by a, modulo p, to get the set X = {a mod p, 2a mod p, . . . 

(p1)a mod p}. None of the elements of X is equal to zero because p does not 

divide a. Furthermore no two of the integers in X are equal. To see this, assume 

that (ja  p) where 1  p 1. Because [5] to p, we can eliminate a from both sides 

of the equation [see Equation (4.3)] resulting in: j  p). This last equality is 

impossible because j and k are both positive integers less than p. Therefore, we 

know that the (p 1) elements of X are all positive integers, with no two elements 

equal. We can conclude the X consists of the set of integers {1,2,..., p1} in 

some order. Multiplying the numbers in both sets and taking the result 

mod p yields 

[5] Recall from Chapter 4 that two numbers are relatively prime if they have no 

prime factors in common; that is, their only common divisor is 1. This is 



 

 

equivalent to saying that two numbers are relatively prime if their greatest 

common divisor is 1. 

Second Version  

An alternative form of Fermat's theorem is also useful: If  p is prime and a is a 

positive integer, then 

 

Exponentiation 

Fermats  little  theorem  sometimes is helpful for quickly finding a solution to 

some exponentiations. The following examples show the idea. 

Example 10.1  

Find the result of 610 mod 11. 

Solution 

We have 610 mod 11 = 1. This is the first version of Fermat’s little theorem where 

p = 11. 

Example 10.2 

Find the result of 312 mod 11 

Solution 

Here the exponent (12) and the modulus (11) are not the same. With substitution 

this can be solved using Fermat’s little theorem. 

 

 



 

 

Multiplicative Inverses  

A very interesting application of fermat’s theorem is in finding some 

Multiplicative Inverses quickly if the modules is a prime. If p is a prime and  a is 

an integer such that p does not divide a(p|a),then  mod p= mod p. 

This can be easily proved if we multiply both sides of the equality by a and use the 

first version of  fermat’s theorem. 

a−1 mod p = a p − 2 mod p 

This application eliminates the use of extended  Euclidean algorithm for finding  

some multiplicative inverse. 

Example 10.3 

The answers to multiplicative inverses modulo a prime can be found without using 

the extended Euclidean algorithm: 

 

 

 

 

 

 

 



 

 

10.2 Euler’s Theorem 

Euler’s Theorem can be thought of as a generalization of Fermat’s little theorem. 

The modules in the Fermat theorem is a prime, the modulus in Euler’s theorem is 

an integer. we introduce two versions of this theorem. 

First version 

The first version of Euler’s theorem is similar to the first version of the Fermat’s 

little theorem. if a and n are coprime, 

  Then Let a and m be coprime. Then aφ(n) = 1 (mod n). 

The derivation of the Euler's formula for φ(n) proceeds in two steps. First, we 

consider the next simplest case φ(pa), where p is prime. 

Next, we establish the multiplicative property of φ: 

φ(n1n2) = φ(n1)φ(n2) 

for coprime m1 and m2. 

Since any integer can be (uniquely) represented in the form 

n = p1
a
1p2

a
2 ... pk

a
k, 

with distinct pi's, these two steps combined will lead to a closed form expression 

for φ. 

Second version 

The Second version of Euler’s theorem is similar to the second version of Fermat’s 

little theorem; it removes the condition that a  and n should be coprime. 

If n= p X q, a<n, and k  an integer, then a k × f(n) + 1 ≡  a (mod n) 

 

Let us give an informal proof of the second version based on the first version. 

because  a<n, three cases are possible: 

 

 



 

 

 

 

 

1. If   a is neither  a multiple of p nor a multiple of  q ,then a and  n are 

coprimes. 

 
2. if  a is a multiple of p(a=I x p),but not a multiple of q 

 

3. if  a is a multiple of  q(a = I x q),but not a multiple  of  p,the proof is the 

same as for the second case,but the roles of p and  q are changed. 

The second version of Euler’s theorem is used in the RSA cryptosystem. 

Applications 

Although we will see some applications of Euler’s Later in this chapter, the 

theorem is very useful for solving some problems. 

 

Exponentiation 

Euler’s theorem  some  times is helpful for quickly finding a solution to some 

exponentiations. The following examples  shows  the  idea. 

Example 10.4 

Find the result of 624 mod 35. 

Solution 



 

 

We have 624 mod 35 = 6f(35) mod 35 = 1. 

Example 10.5 

Find the result of 2062 mod 77. 

Solution 

If we let k = 1 on the second version, we have  

          2062 mod 77 = (20 mod 77) (20f(77) + 1 mod 77) mod 77  

                               = (20)(20) mod 77 = 15. 

Multiplicative inverse 

Euler’s theorem can be used to find multiplicative inverse modulo a prime.also 

with a composite.if n and a are coprime,then a−1 mod n = af(n)−1 mod n 

This can be easily proved if we multiply both sides of the equality by a: 

 

Example 10.6 

The answers to multiplicative inverses modulo a composite can be found without 

using the extended Euclidean algorithm if we know the factorization of the 

composite: 

 



 

 

Generating Primes 

Two mathematicians, Mersenne and Fermat, attempted to develop a formula that 

could Generate  Primes. 

Mersenne Primes  

Mersenne defined the following formula, which is called the Mersenne numbers, 

that was supposed to enumerate all primes. 

 

If the p above formula is a prime ,then Mp was to be aprime, years later was proven 

that not all numbers created by the Mersenne formula are primes. The following 

lists some Mersenne numbers. 

 

It turned out that M11 is not a prime. however, 41  Mersenne primes have been 

found; the latest one is M124036583, a very large number with 7,253,733 digits, 

the search continues. 

A number in the form Mp = 2p − 1 is called a Mersenne number and may or may 

not be a prime. 



 

 

Fermat Primes  

Fermat tried to find aformula to generate primes. The following formula is a  

Fermat number: 

 

Fermat tested numbers up to F4 ,but it turned out that  F5  is not a prime. no number. 

F0 = 3    

 F1 = 5      

F2 = 17     

 F3 = 257   

  F4 = 65537 

F5 = 4294967297 = 641 × 6700417  Not a prime. 

Greater than F4,  has  been  proven to be a prime.As  a  m a  tter of f act m any numbers up to 

F24 h a  ve been proven to be composite numbers. 

 

10.2   PRIMALITY TESTING 

Finding an algorithm to correctly and efficiently test a very large integer and 

output a prime or a composite has always been a challenge in number theory, and 

consequently in cryptography. However, recent developments look very 

promising. 



 

 

Algorithms that deal with this issue can be  divided into two categories. one is 

deterministic  algorithm and another one is Probabilistic algorithms.  A 

deterministic  algorithm always gives a correct answer; a Probabilistic algorithms 

gives an answer that is  correct most of the time,but not all of the time. Although  a 

deterministic algorithm is deal ,it is normally less efficient than the corresponding 

probabilistic one. 

Deterministic  Algorithms 

A deterministic prim ality testing algorithm accepts an  integer and always outputs 

a prime or a composite. all  deterministic a lgorithms were  so inefficient  at 

finding l a rger  primes th a t  they were  considered  infeasible. As we will show 

shortly, a newer algorithms looks more promising. 

Divisibility Algorithm 

The most elementary deterministic test for primality is the divisibility test. We use 

as divisors all numbers small that  . If any of these numbers divides n,then n is 

composite. 

Algorithm shows the divisibility test in primitive,very inefficient form. 

This algorithm can be improved y testing only odd numbers. It  can be further  

improved by using a table of primes between  2 and .  The number of  

arithmetic operations on algorithm10.1. is   . if we assume  that each arithmetic 

operation uses only one bit operation (unrealistic) then the  bit-operation 

complexity of algorithm 10.1 . Where nb  is the number of bits in –

n. in big O notation  ,the complexity can be shown as ;exponential,in other 

words, the divisibility algorithm is feasible(intractable) if nb is large. 



 

 

 The  bit-operation complexity  of the divisibility test is exponential. 

 

Example 10.7  

Assume n has 200 bits. What is the number of bit operations needed to run the 

divisibility-test algorithm? 

Solution 

The bit-operation complexity of this algorithm is 2nb/2. This means that the 

algorithm needs 2100 bit operations. On a computer capable of doing 230 bit 

operations per second, the algorithm needs 270 seconds to do the testing (forever). 

AKS Algorithm  

In  2002 ,Agrawal, kayal, and Saxena announced that they had found an algorithm 

for primality testing with polynomial bit-operation time complexity of 

. The algorithm uses the fact that  mod p. it is not 

surprising to see some future refinements makes this algorithm the standard 

primality test in mathematics and computer science. 

 



 

 

Example 10.8 

Assume n has 200 bits. What is the number of bit operations needed to run the 

AKS algorithm? 

Solution 

This algorithm needs only (log2200)12 = 39,547,615,483 bit operations. On a 

computer capable of doing 1 billion bit operations per second, the algorithm needs 

only 40 seconds. 

 

Probabilistic Algorithms 

This methods may be used for a while until the AKS is formally accepted as  the 

standard. A probabilistic algorithm does not guarantee the correctness of the result. 

Algorithm in this category returns either a prime or composite based on the 

following rules: 

1. If  the integer to be tested is actually prime,the algorithm definitely returns a 

prime. 

2. If  the integer to be tested is actually a composite,it returns a composite with 

probability , but it may  return a prime with the probability  

The probability of mistake can be improved if we run the algorithm more than  

once  with different parameters or using different methods. If we run the algorithm 

m times. The probability of error may reduce to   

 

 



 

 

Fermats Test 

 The first probabilistic method we discussis this Fermat primality test.Result the 

Fermat little theorem. 

 

1. If n is a prime, the  congruence holds. it does not mean  that if the 

congruence holds ,n is a prime . the integer can be a prime or composite. We 

define the as the following as the Fermat test. 

2. If n is a prime ,  

3. If n is a composite, it is possible that . 

Example 10.9  

Does the number 561 pass the Fermat test? 

Solution 

Use base 2 

 

The number passes the Fermat test, but it is not a prime, because 561 = 33 × 17. 

 

 

 

 

 



 

 

Square Root Test  

In modular arithmetic ,if n is a prime, the square root of 1 is either +1 or -1.if n is 

composite, the square root is +1 or -1,but there may be other roots. This is knows 

as the square root primality test. 

Note that in modular arithmetic, -1 means n-1 

 

Example 10.10 

What are the square roots of 1 mod n if n is 7 (a prime)? 

Solution 

The only square roots are 1 and −1. We can see that  

 

 

Note that we don’t have to test 4,5 and 6 because4=-3 mod 7,5= -2 mod 7 and 6= -

1 mod 7. 

 

 

 

 

 



 

 

Example 10.11  

What are the square roots of 1 mod n if n is 8 (a composite)? 

Solution 

There are four solutions: 1, 3, 5, and 7 (which is −1). We can see that 

 

Example 10.12  

What are the square roots of 1 mod n if n is 17 (a prime)? 

Solution 

There are only two solutions: 1 and −1 

 

Example 10.13 

What are the square roots of 1 mod n if n is 22 (a composite)? 

Solution 

Surprisingly, there are only two solutions, +1 and −1, although 22 is a composite. 

 

Miller-Rabin Test  



 

 

The Miller-Rabin  Primality  test combines the Fermat test and square root test in a 

very elegant way to find a strong pseudoprime (a prime with a very high 

probability). In this test, we write n-1 as the product of an odd number m and a 

power of 2. 

 

The Fermat test in base a can be written as shown in figure 10.2  

Figure 10.2  Idea behind Fermat primality test 

 

 

 

 

 

 

 

Algorithm 10.2 shows the pseudocode for the Miller-Rabin test 

 



 

 

 

There exists a proof that each time a number passes a Miller-Rabin test ,the 

probability that it is not a prime is ¼. If the number passesm tests(with m different 

bases),the probability that its not a prime is (1/4) the power of m. . 

Example 10.14  

Does the number 561 pass the Miller-Rabin test? 

Solution 

Using base 2, let 561 − 1 = 35 × 24, which means m = 35, k = 4, and a = 2. 

 

 

Example 10.15  

We already know that 27 is not a prime. Let us apply the Miller-Rabin test. 



 

 

Solution 

With base 2, let 27 − 1 = 13 × 21, which means that m = 13, k = 1, and a = 2. In 

this case, because k − 1 = 0, we should do only the initialization step: T = 213 mod 

27 = 11 mod 27. However, because the algorithm never enters the loop, it returns a 

composite. 

Example 10.16  

We know that 61 is a prime, let us see if it passes the Miller-Rabin test. 

Solution 

We use base 2. 

 

  Recommended Primality Test 

Today, one of the most popular primality test is a combination of the divisibility 

test and the Miller-Rabin test.  

1. choose an odd integer , because all even integers re definitely composites. 

2. do some trivial divisiblitytests on some known prime such as 3,5,7,11,13… 

and so on  to be sure that you are not dealing with an obvious composite. If 

the  number passes all of these tests,move to the next step. Ifthe number fails 

any of the test s,go back to step 1 and choose another odd number. 

3. choose a set of bases for  testing. A  large set of bases is preferable. 



 

 

4. Do Miller-Rabin tests on each of the bases. If any of them fails ,go back to 

step 1 and choose another odd number. If the test passes for all bases,declare 

the number a strong pdeudoprime. 

Example 10.17  

The number 4033 is a composite (37 × 109). Does it pass the recommended 

primality test? 

Solution 

1. Perform the divisibility tests first. The numbers 2, 3, 5, 7, 11, 17, 

    and 23 are not divisors of 4033. 

2. Perform the Miller-Rabin test with a base of 2, 4033 − 1 = 63 × 

    26, which means m is 63 and k is 6 

 

Example 10.18  

3. But we are not satisfied. We continue with another base, 3. 

 

 


