
 

 

 Module 30 – Simple code generator and Register allocation 

In this module we will try to learn the simple code generator algorithm. We shall also discuss the 

data structures involved in the simple code generator algorithm. We will conclude this module 

by understanding the algorithms for register allocation.  

30.1 Simple Code Generator 

The simple code generator algorithm generates target code for a sequence of three-address 

statements. The code generator algorithm works by considering individually all the basic blocks. 

It uses the next-use information to decide on whether to keep the computation in the register or 

move it to a variable so that the register could be reused. The computation of next-use 

information is explained in the previous module. We assume that for each operator in the input 

statement there is a target- language operator. It uses new function getreg() to assign registers to 

variables. The algorithm for code generation initially checks if operands to three-address code 

are available in registers. After computing the results of two operations, the results are kept in 

registers till the result is required by another computation or register is kept up to a procedure 

call or end of block to avoid errors.  

For example, consider the following instruction:  

• a := b+c  

The following sequence would be followed by the code generator algorithm:  

 The algorithm initially checks if ‘b’ and ‘c’ are in registers Ri, Rj. If available then the 

instruction ADD Ri, Rj is generated and this costs 1 and the result is stored in Rj  

• If ‘b’ alone is in register and ‘c’ is not in the register, then the instruction ADD c, Ri is 

generated to a cost of 2 

• MOV a, Rj is issued to move the computation to ‘a’.  

The issues that need to be resolved are how to get the registers. If the registers are free then there 

is no issue. If the registers are all occupied, we must free an existing register. Will the instruction 

generator go for memory based instructions or will necessarily have to go for a register based 

instruction only is to be considered. 

With these issues in consideration, the simple code generator algorithm uses two data structures 

to resolve, which is discussed in the next section.  

30.1.1 Data structures for the Simple code generator algorithm 

This algorithm uses two data structures for generating code. The first one is the Register 

Descriptor which is used to keep track of which variable is currently stored in a register at a 



 

 

particular point in the code. The second data structure is referred to as address descriptor which 

is used to keep track of the location where the current value of the variable ca n be found at run 

time.  

Both these data structures are hash table and have the fields as given in Table 30.1  

Table 30.1 Register and Address Descriptor 

Register Descriptor Address Descriptor 

Register Name Contents of the register Variable Name Available location 

    

 

For example consider the following code: 

MOV a, R0 after this instruction is executed, the register descriptor of R0 will have its contents 

column updated as ‘a’.  

For the following sequence of code, the contents of register descriptor of R0 and R1 will be ‘a’. 

The contents of the address descriptor of the variable ‘a‘will read R0 and R1.  

 MOV a, R0 

 MOV R0, R1  

A more simple description for register descriptor would be that, if we query “register name” as 

input the output will be what variable it contains. On the other hand, if we query the “variable 

name” to the address descriptor the output will be the location of the variable ‘a’, which could be 

address or register.  

30.1.2 The Code Generation Algorithm 

Algorithm 30.1 SimpleCodeGenerator( ) 

Input : Sequence of 3-address statements from a basic block. 

Output: Assembly language code 

 For each statement x := y op z  

1. Set location L = getreg(y, z) to store the result of y op z  
2. If y  L then generate 

 MOV y’,L 
where y’ denotes one of the locations where the value of y is available - choose register if 

possible  
3. Generate 

 OP z’,L 



 

 

where z’ is one of the locations of z; 
Update register/address descriptor of x to include L 

4. If y and/or z has no next use and is stored in register, update register descriptors to 
remove y and/or z  

 
The first step in the algorithm is to invoke the getreg() function to get a register to store the result 
of the computation. The next step is to find the location of the first operand on the LHS. If it is in 

a register which is found by querying the address descriptor, then the same register is issued. The 
next step is issue a MOV command to transfer the variable’s value into the register. If the 

variable is already in a register then this instruction could be eliminated. The next instruction is 
to operate on that register using the other operand and at this point the value of the LHS variable 
of the input instruction is in the register. So, the address descriptor and register descriptors are 

updated accordingly. The last step is to find out whether the current variable has a next-use 
immediately. Depending on the next-use the register content is copied to the variable and the 

descriptors are updated so that the register could be used for some other instructions.  
 

Algorithm 30.2 getreg ( )  

Input: Request for a register 

Output: A register or the memory location 

1. If y is stored in a register R and R only holds the value y, and y has no next use, then 

return R; 

Update address descriptor: value y no longer in R 

2. Else, return a new empty register if available 

3. Else, find an occupied register R; 

Store contents (register spill) by generating 

 MOV R,M 

for every M in address descriptor of y; 

Return register R  

4. Else Return a memory location 

The getreg() function, returns a register if a free register is available. If the value of the variable 

for which we are trying to issue a MOV instruction is already in a register then the same register 

is used. If there are no free registers, then an occupied register is identified, it is freed by moving 

its contents to variable and then is issued. If no such free register could be identified, then the 

instruction operates on memory location.  

Consider the following statement which is part of a high- level language: 

 d := (a-b) + (a-c) + (a-c) 



 

 

The corresponding three- address code will be the following, where t, u, v, are temporary 

variables.  

 t: = a-b 

 u := a-c 

 v := t + u 

 d := v +u  

The code generation sequence is given in Table 30.2.  

Table 30.2 Example code generated using SimpleCodeGenerator algorithm 

Statements Code Generated 
Register 

Descriptor 

Address 

Descriptor 

Comments 

t := a - b MOV a,R0 
SUB b,R0  

Registers empty 
R0 contains t  

t in R0  The assumption is that there 
are two empty registers R0 

and R1. Assuming getreg() 
issues R0, we generate two 
instructions. The first MOV 

copies value of ‘a’ into R0 
and the second instruction 

computes the subtraction of 
‘b’ from ‘a’ and the result is 
in R0. The register and 

address descriptors are 
updated  to the information 

that R0 has ‘t’ 

u := a - c  MOV a,R1 
SUB c,R1  

R0 contains t 
R1 contains v  

t in R0 
u in R1  

‘a’ and ‘c’ are not in any 
register. So, the next empty 
register R1 is used and the 

instruction sequence is similar 
to the previous one. The 

register descriptor and address 
descriptor are updated to 
know about the temporary 

variable ‘u’  

v := t + u  ADD R1, R0  R0 contains v 
R1 contains u  

u in R1 
 v in R0  

‘t’, ‘u’ are in registers and 
hence this instruction requires 

only one instruction ADD. 
Register R0 is used as ‘u’ has 
an immediate next-use. The 

register descriptor along with 
the address descriptor are 

updated to know about the 



 

 

variable ‘v’ 

d := v + u ADD R1, R0 
MOV R0, d  

R0 contains d  d in R0 
d in R0 and 

memory  

‘v’ and ‘u’ are in registers and 
hence ADD is the only 

instruction and the final result 
is moved from register to the 
variable ‘d’. The descriptors 

are appropriately updated.  

 

To generate target code for instructions involving arrays and pointers Table 30.3 gives an 

overview of the instruction sequence along with their corresponding cost.  

Table 30.3 Sample instructions for arrays and pointers  

Statement  i  in Register Ri  i in Memory Mi i in Stack  

Code  Cost  Code  Cost  Code  Cost  

a := b[i]  MOV b[Ri], R  2  MOV Mi, R 
MOV b[R], R  

4  MOV Si(A), R 
MOV b(R), R  

4  

a[i] := b  MOV b, a[Ri]  2  MOV Mi, R 

MOV b, a[R]  

5  MOV Si(A), R 

MOV b, a(R)  

5  

Statement  p in Register Rp p  in Memory Mp p in Stack   

 Code  Cost  Code  Cost  Code  Cost  

a := *p  MOV *Rp, a  2  MOV Mp, R 
MOV *R, R  

3  MOV Sp(A), R 
MOV  *R, R  

3  

*p := a  MOV a, *Rp  2  MOV Mp, R 

MOV a, *R  

4  MOV  a, R 

MOV R, *Sp(A)  

4  

 

Conditional Statements are part of any programming construct to take an appropriate branch. 

Conditional jumps are implemented by finding out the value of the register. If the value of a 

register is negative, zero, positive, non-negative, non-zero, non-positive are the various 

possibilities to check to branch to a particular situation. The compiler typically uses a set of 

condition codes to indicate whether the computed quantity of a register is zero, positive or 

negative  

• First case of conditional statement: if x < y goto z - The code that is generated should 

involve subtracting ‘y’ from ‘x’ which is in register R and then jump to location ‘z’ if R 

is negative 

• Second case of conditional statement: CMP x, y - Sets the condition code to positive if x> 

y and so on  

• CJ < z - Jump to z if value is negative 

 



 

 

Consider the following example 

• x := y + z 

• If x < 0  goto z 

The following would be the target code 

MOV y, R0 

ADD z, R0 

MOV R0, x      // x is the condition code 

CJ < z  

30.2 Register Allocation 

A primary task of the compiler is register allocation for the variables. The number of registers 

available in any hardware architecture is very minimal compared to the number of variables that 

are defined in a particular piece of program. The getreg algorithm is simple but not optimal as 

the algorithm stores all live variables in registers till the end of a block. The register allocation 

problem is NP complete. Suppose, if we go in for Global register allocation which involves 

assigning variables to limited number of available registers and attempts to keep these registers 

consistent across basic block boundaries.  

Keeping variables in registers in loops can be beneficial as it avoids register spilling. Suppose 

loading a variable x has a cost of 2 and storing a variable x has also a cost of 2, benefit of 

allocating a register to a variable x within a loop L is 

 BL ( use(x, B) + 2 live(x, B) ) 

where use(x, B) is the number of times x is used in B and live(x, B) = true if x is live on exit from 

B  

Consider the example of basic block and control flow graph of figure 30.1: 

 

Figure 30.1 Sample graph 



 

 

Table 30.4 Example global register allocation computation 

Block   

↓ 
VARIABLE  

B1  B2  B3  B4 Total Comments 

Use  Live  Use  Live  Use  Live  Use  Live  

a  0  1  1  0  1  0  0  0  4  B1 – variable is 
defined once. Use is 

0 as it is defined 
only here 

B2 – variable is in 
the RHS of the 
expression 

B3 - variable is in 
the RHS of the 

expression 
B4 – variable is not 
involved 

Total is computed 
using the equation 

use(x) + 2 * live(x) 

b  2  0  0  0  0  1  0  1  6  B1 – variable is 
defined in two 
expressions 

B3 – variable is live 
as it is in the LHS 

B4 – same as B3 

c  1  0  0  0  1  0  1  0  3  B1 – variable is part 
of one expression  

B3 – variable is used 
is the RHS 
B4 – variable is in 

the RHS 

d  1  1  1  0  1  0  1  0  6  B1 – defined once 
and used once 

B2 – used once 
B3 – used once 
B4 – used once 

e  0  1  0  0  0  1  0  0  4  B1 – defined once 

B3 – defined once 

f  1  0  0  1  1  0  0  0  4  B1 – used once 
B2 – defined once 

B3 – used once 

 



 

 

From Table 30.4, we find the maximum cost associated with every variable. A dedicated register 

is given to the variable that has the maximum cost and is never disturbed during register spilling. 

A maximum cost indicates that variable is used and defined more.  

Global Register Allocation can also be done using a graph coloring algorithm. When a register is 

needed and all available registers are in use, the content of one of the used registers must be 

stored to free a register and this is referred to as register spilling. Graph coloring allocates 

registers and attempts to minimize the cost of spills. An interference graph is built based on how 

variable interfere with each other. After constructing the graph, the graph coloring a lgorithm is 

applied to identify how many colors are at the least required to color this graph and this 

essentially translates to the number of registers required to compute the sequence of instructions.  

Register interference graph is constructed with nodes indicating the variables which indirectly 

refer to the symbolic registers. An edge between nodes is established such that if one variable is 

live at a point where other is defined. For the first block B1 of the example in figure 30.1, the 

interference graph is shown in figure 30.2.  

 

Figure 30.2 Interference graph for Block B1 of figure 30.1 

For the graph of figure 30.2, two colors are required. Thus 2 registers are required to compute 

this basic block B1.  

Summary: To summarize, in this module we have discussed the simple code generator 

algorithm detailing on register descriptors and address descriptors. We also looked at the register 

allocation algorithm which is based on use and live statistics and also another methodology 

based on graph coloring.  

 


