

Module 26 – Backpatching and Procedures

In this module, we would learn to generate three-address code for control flow statements using

backpatching. We shall also discuss to combine Boolean expressions and control flow statements

to generate three-address code based on Backpatching. The various semantic rules that need to

be attached to the productions of the Context Free Grammar are discussed in this module and

some example control flow statements are discussed.

26.1Need for Backpatching

The syntax directed definition to generate three-address code is typically done in two passes. In

the first pass the syntax tree is constructed and annotated with rules. In the second pass a depth

first search of the tree is carried out to perform syntax directed translation. If a statement consists

of multiple lines of instructions then the labels to branch may not be known in advance if SDD

needs to be done in a single pass. To address this issue we introduce a technique called

backpatching.

The fundamental behind the technique of backpatching is to generate a series of branching
statements with the target of jumps unspecified in the first pass. In the second pass we put each

statement in a list and fill them with appropriate true and false labels.

26.2Functions to incorporate backpatching

Backpatching technique is incorporated using three functions. Makelist(), merge() and

backpatch() are the three functions carried out in two passes to generate code using
backpatching.

• makelist(i) – This is used to create a new list containing three-address location i, and it

returns a pointer to the list. This is the first function which is created to form a true / false

list.

• merge(p1, p2) – This function concatenates lists pointed to by p1 and p2, returns a pointer

to the concatenated list. This is used to assign the same true / false labels to more than

one address.

• backpatch(p, i) – This function is used to insert ‘i' as the target label for each of the

statements in the list pointed to by p. Using the information provided by this function

labels are attached to all the statements.

Consider the Boolean expression “a < b or c < d and e < f”. To generate three-address code for

this, we have already incorporated semantic rules in the previous module. In backpatching the

same code is generated in two passes. In the first pass, the following would be generated:

100: if a < b goto _

101: goto _

102: if c < d goto _

103: goto _

104: if e < f goto _

105: goto _

In the second pass, the same code is re-run to generate the true, false labels by incorporating

short circuit information.

100: if a < b goto TRUE

101: goto 102

102: if c < d goto 104

103: goto FALSE

104: if e < f goto TRUE

105: goto FALSE

In this module, we will write semantic rules to generate three-address code based in two passes

using the backpatching functions discussed already.

26.3Boolean Expressions and Backpatching

The productions for the Boolean expressions are the same. To just generate line numbers and to

incorporate backpatching we add new non-terminals as part of the production. This non-terminal

just produces ‘ε’ and doesn’t alter the string of the grammar. The semantic rules that incorporate

backpatching is given in Table 26.1. A function nextquad() is used to generate the next line

number for generating three-address code and that is the reason behind introducing the new non-

terminal M.

Table 26.1 Semantic rules for incorporating Backpatching

Production Semantic Rule Inference

M  ε { M.quad := nextquad() } The semantic rule associated
with this variable helps in
generating the next line number

to generate three address code

E  E1 or M E2 { backpatch(E
1
.falselist, M.quad);

 E.truelist := merge(E
1
.truelist,

E
2
.truelist);

E.falselist := E
2
.falselist }

Merge function concatenates the
truelist of E1 and E2. If E1 is

false we need to associate the
false list of E1 with the next line
number using M.quad. This line

will contain the first instruction
corresponding to E2 as this will

be evaluated only if E1 is false.
The expression E’s false list
will be E2’s false list after

incorporating short circuit

E  E1 and M E2 { backpatch(E
1
.truelist, M.quad);

E.truelist := E
2
.truelist;

 E.falselist := merge(E
1
.falselist,

E
2
.falselist); }

Here as the operator is ‘and’, we
merge the false list of E1 and
E2’s and assign as E’s false list.

The true list of E is E2’s true
list as we will be executing E2

only if E1 is true. To execute
E2, we backpatch E1’s true to
the line number corresponding

to E2’s first instruction which is
given by M.quad

E  not E1 { E.truelist := E
1
.falselist;

 E.falselist := E
1
.truelist }

The false and true lists of E and

E1 are reversed.

E  (E1) { E.truelist := E
1
.truelist;

E.falselist := E
1
.falselist }

The false and true lists of E and
E1 are the same as the

parenthesis is just to prioritize
the expression E1

E  id1 relop id2 { E.truelist := makelist(nextquad());
 E.falselist := makelist(nextquad() + 1);

emit(‘if’ id
1
.place relop.op id

2
.place

‘goto _’);

emit(‘goto _’) }

The line numbers of truelist and
falselist for E is considered as

the next line number and its
following line number. The

code is generated using “emit”
in a similar fashion as explained
in the previous modules, with

the only difference being the
goto is left blank which will be

backpatched later.

E true { E.truelist := makelist(nextquad());
 E.falselist := nil;
 emit(‘goto _’) }

Basic terminating production
which will generate a goto
blank which will be

backpatched with truelist’s
number

E  false { E.falselist := makelist(nextquad());

E.truelist := nil;
emit(‘goto _’) }

Basic terminating production

which will generate a goto
blank which will be

backpatched with falselist’s
number

Example 26.1 Consider the same example Boolean expression “a < b or c < d and e < f”. The

corresponding derivation tree would be as shown in figure 26.1

 E

 E1 or M {102} E2

 (a < b)

 E3 and M E4

 (c<d) {104} (e<f)

Figure 26.1 Example derivation tree

Consider the first instruction is to start at line number 100. The sequence of three-address code is

given in Table 26.2

Table 26.2 Three-address code for the tree of figure 26.1

Line

number

Code Truelist Falselist Inference

100 if a<b goto --- E1 – {100) E1 – {101} From the semantic rules for a

Boolean expression E1 as
given in Table 26.1, the two

instructions are generated
and the corresponding truelist
and falselist is given as the

line number and the
following line number

101 goto -----

102 if c < d goto ------- E3 – {102} E3 – {103} Using M.quad, 102 line

number is generated. Using
the same semantic rule, E3’s
truelist and false list are also

generated

103 goto ---------

104 if e < f goto ------ E4 – {104} E4 – {105} Using the M of the ‘and’
expression we generate 104

as the line number. Using the
same semantic rule, E4’s
truelist and falselist is

generated

105 goto -------------

 E2 – {104} E2 – {103,
105}

E2 is the ‘and’ of E3 and E4.
Using the semantic rule, the

false list of E2 is the merger
of falselist of E3 and E4. The

truelist of E2 is the truelist of
E4

 E –

{100, 104}

E –

{103, 105}

E is the ‘or’ of E1 and E2. So

the truelist of E is the truelist
of the merger of E1 and E2.
The falselist of E is the false

list of E2

100 if a<b goto TRUE At line number’s 100 and
104, overall True value

should be backpatched as
E.true is {100, 104}

101 goto 102 To execute the expression E3

102 if c < d goto 104 To execute E4

103 goto FALSE At line number’s 103, 105

overall false should be
backpatched as E.false is
{103, 105}

104 if e < f goto TRUE At line number’s 100 and

104, overall True value
should be backpatched as

E.true is {100, 104}

105 goto FALSE At line number’s 103, 105
overall false should be
backpatched as E.false is

{103, 105

26.4 Control flow statements and Backpatching

Control flow statements have been discussed in the previous module along with their semantic

rules. As Boolean expressions are part of control flow statements, backpatching can be applied to

control flow statements also.

Consider the following grammar with productions for control flow statements.

S  if E then S | if E then S else S | while E do S | begin L end | A

L  L ; S | S

Example of the statements could be a sequences of statements separated by ‘;’. S1; S2; S3; S4 ; S5;

etc. The attributes of S is S.nextlist which will backpatch list for jumps to the next statement

after S (or nil). Similarly the attributes of L is also L.nextlist which backpatch list for jumps to

the next statement after L (or nil).

For the example of the sequence of statements S1, S2, S3, S4, S5, etc.. we will have the code for

S1 to S5 followed by the backpatch of each statement, to the statement following it.

100: Code for S1

200: Code for S2

300: Code for S3

400: Code for S4

500: Code for S5

The following backpatch will ensure that the sequence of statements are executed in the order.

backpatch(S1.nextlist, 200)

backpatch(S2.nextlist, 300)

backpatch(S3.nextlist, 400)

backpatch(S4.nextlist, 500)

Our aim would be to add semantic rules to handle such a scenario and other control flow

statements. The semantic rules are given in Table 26.3. In this case also we use a dummy

variable M to generate the next line number.

Table 26.3 Semantic rules for control flow statements to incorporate backpatching

Production Semantic Rules Inference

S  A { S.nextlist := nil } This production is a
termination production and
hence there is no need for a

backpatch

S  begin L end { S.nextlist := L.nextlist } Both S and L has a nextlist
attribute and they are set to

the same. The statements
between ‘begin’ and ‘end’ are
run only once.

S  if E then M S1 { backpatch(E.truelist, M.quad);
S.nextlist := merge(E.falselist,
S1.nextlist) }

The variable M produces ε
and it indicates the same
semantic rule as discussed in

the table 26.1. If the
expression is false, then the

statement S1 need to be
skipped. If Expression is true,
then S1 should be executed.

In both the scenarios, the
statement that is available

outside S1 need to be
continued. To carry out this,
the falselist of E and the

nextlist of S1 are merged and
that is assigned as S’s

nextlist. If expression is true
then the statement S1 is to be

executed. To incorporate this
we backpatch the truelist of
the expression to S1 which is

done with the help of M.quad

L  L1 ; M S { backpatch(L1.nextlist,

M.quad);

 L.nextlist := S.nextlist; }

After executing L1, we need
to execute S. To incorporate

this we backpatch L1’s
nextlist with M.quad which

corresponds to the statement
comprising S. The next of L
and S are same

L  S { L.nextlist := S.nextlist; } There is no backpatching and

we simply say the nextlist of
L and S are same

S  if E then M S1 N else

M2 S2

{ backpatch(E.truelist,

M1.quad);

backpatch(E.falselist,
M2.quad);

S.nextlist := merge(S1.nextlist,

merge(N.nextlist, S2.nextlist)) }

The expression is evaluated

and if it is true S1 is to be
executed and S2 if the
statement is false. This is

implemented by
backpatching the truelist and

falselist to M1.quad and
M2.quad which is the
beginning of statements S1,

S2 respectively. After
executing S1, S2 need to be

skipped and the statement
which is available after S
needs to be executed. After

executing S2 by skipping S1,
we need to execute the

statement outside the body of
S. To incorporate this we use
the symbol N to skip S2. We

assign the nextlist of S as
S1’s next and S2’s next.

S  while M1 E do M2 S1 { backpatch(S1,nextlist,

M1.quad);

backpatch(E.truelist, M2.quad);

S.nextlist := E.falselist;

emit(‘goto _’) }

The variable M2 helps to go

to go to statement S1 if the
expression is true. If the
expression is false then we

need to go to the statement
following S1 which is done

as the nextlist of S the same
as E’s falselist. To
incorporate continuation of

the loop, M1 is used which is
to come back after finishing

S1. This is same as S.begin
which was discussed in the
previous module. The goto –

is to loop again to execute the
expression E.

N   { N.nextlist :=

makelist(nextquad());
emit(‘goto _’) }

The goto – is to skip S2

which is part of if- then-else
and go to the statement

following S2.

The control flow statements are the same as given in the previous module. Let us discuss the

concept of control flow statements using an example.

Example 26.2 Consider the following code block:

while a < b do

if c < d then
 x : = y + z
 else

 x : = y - z

Using the while and if-then-else grammar the following will be the split

While M1 E1 do M2 S1

 100 a < b 102 if E then M1 S11 N else M2 S12

 c < d 104 x := y+z 105 106 x := y-z

The code and the backpatched code are discussed in table 26. 4

Table 26.4 Code and Backpatched code for the example “while”

Line

number

Code Truelist Falselist Inference

100 if (a<b) goto --- {102} S.nextlist S1’s next is M1.quad and
hence is assigned 100.
E.truelist is M2.quad and

E.falselist is S.nextlist

101 goto --- E.falselist to be
backpatched here.

102 if (c < d) goto --- {104} {106} If Expression is true we

go to M1.quad and to
M2.quad if expression is

false.

103 goto ---

104 x:= y + z The statement S11 is
evaluated here

105 goto --- This goto is part of the

variable N to go to
N.nextlist. N.nextlist,
S12.nextlist, S11.nextlist

all will be S1’s nextlist
which is M1.quad

106 x:= y – z Statement S12 is

evaluated here

107 goto --- S12’s nextlist

108 S.next

100 if (a<b) goto 102 True of the expression to
the body of S1

101 goto 108 False of the expression to

the statement after the
while’s body

102 if (c < d) goto 104 To evaluate S11

103 goto 106 To evaluate S12

104 x:= y + z

105 goto 100 To go to S.begin. This is

from the semantic rule
corresponding to variable
N

106 x:= y – z

107 goto 100 To go to S.begin. This is
from the semantic rule
corresponding to while

108 S.next

26.5 Semantic rules for Procedures

After discussing the semantic rules for all programming constructs for the Pascal programming

language, we will now look at discussing the semantic rules for generating three-address code for

procedure calls. Consider the grammar for the procedures as follows:

S  call id (Elist)

Elist  Elist , E | E

A statement could involve calling a procedure. A procedure is called with the ‘name’ and a list of

parameters. The first production is to invoke a procedure call. The variable Elist indicates a set of

parameters and that is given in the second production.

Consider the following example involving a call to a function foo(a+1, b, 7)

.

This would be split with new temporary variables t1 and t2 as follows

t1 := a + 1

t2 := 7

This will be sequenced using the following split of three-address code.

param t1 – computing the value a+1

param b – computing and accessing ‘b’

param t2 – accessing the value 7

call foo 3 – function foo will be called with the queue address having the parameters

To incorporate the above sequence of statements for any procedure calls, we will write semantic

rules for the same.

1. S  call id (Elist) – The following would be semantic rule.

 { for each item p on queue do

 emit(‘param’ p);

 emit(‘call’ id.place |queue|) }

 Each of the parameters are split and put on a queue. We generate three address code

for each of the parameters p. Then a final three-address code to invoke the procedure

with the argument as the address of the queue is generated.

2. Elist  Elist , E - append E.place to the end of queue

3. Elist  E - initialize queue to contain only E.place

Summary: In this module we discussed the backpatching approach to generate three-address

code for control flow statements, Boolean expressions and procedures. The next module will

discuss the next phase of the compiler namely Code generation.

