

Module 25 – Control Flow statements and Boolean Expressions

In this module we learn to generate three address code for control flow statements. We will also

try to incorporate short circuit information in Boolean expression’s 3-address code generation.

As the flow in control flow’s statements involve Boolean expressions, we will look at the

semantic rules for generating three-address code involving Boolean expressions with Control

flow.

25.1 Control Flow statements

We have seen semantic rules that would help generate three-address code for declarations, array

accesses, arithmetic expressions, Boolean expressions and to keep track of scope information.

Thus, a context free grammar is used to define every programming construct and we write

semantic rules based on this context free grammar to generate three-address code.

Control flow statements are essential components of programming languages that allows

executing code based on a decision. The typically available contro l flow statements are if-then,

if- then-else, while-do statement and do – while statements. The control flow statements have an

expression that needs to be evaluated and based on the true or false value of the expression the

appropriate branching is taken.

The context free grammar for defining control flow statements can be defined as

S  if E then S1 | if E then S1 else S2 | while E do S1 | do S1 while E

The LHS symbol ‘S’ stands for statement. The production defines a statement could be a simple

“if Expression then Statement” or “if Expression then statement else alternate statement”, “while

Expression is true do the statements repeatedly” or do a statement repeatedly while the

expression is true. In all these statements “E” corresponds to a Boolean expression or sometimes

it could be an assignment statement. Thus to generate three-address code for a control flow

statement, the first step is to generate code for the expression. This expression could be a

sequence of expressions combined with relational and logical operators. Let us discuss each type

of control flow statements and the semantic rules used for generating three-address code in the

subsequent sections.

25.1.1 Three-address code for if-then statements

The schematic for generating three-address code for if- then statements is given in figure 25.1. As

discussed already the expression E needs to be executed first and hence the code corresponding

to E is generated first. The value of the expression is evaluated and if it is found to be “true” the

statement corresponding to the body of the if- then is executed followed by the statement

following the if-then statement. If the expression is false, the body of the if- then is skipped and

directly we go to the statement that is following the if-then statement’s body.

Figure 25.1 Schematic for three-address code for if- then statements

Figure 25.1 explains this schematic flow. The body of the if-then statement is given a label and is

labeled as E.true and these statements need to be evaluated if the expression is evaluated to be

true. The semantic rules to implement this sequence are given in Table 25.1. The expression E

has attributes code, true and false labels. The attributes of the statement S are code and next. S1

in turn could have a if- then or if- then else etc and hence we simply leave it as S1.code rather than

going into the details of S1.

Table 25.1 Semantic rules for three-address code for if- then statement

Production Semantic Rules Inference

S  if E then S1 E.true:= newlabel
E.false := S.next

S1.next := S.next
S.code := E.code || gen (E.true’:’) || S1.code

We first generate a new
address location E.true. If

the expression E is false
then control should go to

the statement following the
body of the if-then. Hence,
we assign E.false as S.next.

If the expression E is true
the body of S, the

statements following if-
then block need to be
evaluated and this is

ensured by setting S1.next
and S.next as same.

Finally, the code
corresponding to S is
evaluated as E.code

followed by the generation
of E.true label followed by

S1.code.

25.1.2 Three-address code for if-then-else statements

The schematic for generating three-address code for if- then statements is given in figure 25.2. As

discussed already the expression E needs to be executed first and hence the code corresponding

to E is generated first. The value of the expression is evaluated and if it is found to be “true” the

statement S1 corresponding to the body of the if- then is executed; the body of the else is skipped

followed by the statement following the if-then-else statement. If the expression is false, the

body of the else S2 is executed followed by the statement following the if-then-else statement’s

body.

Figure 25.2 Schematic for three-address code for if- then-else statements

As in the earlier situation, S has two attributes, code and next. The body of S1 and S2 could in-

turn contain multiple statements, so we leave it as S1.code and S2.code respectively. The

semantic rules to implement the flow as given in figure 25.2 is discussed in Table 25.2

Table 25.2 Semantic rules for generating three-address code for if-then-else

Production Semantic Rules Inference

S 
 if E then S1 else S2

E.true:= newlabel
E.false := newlabel

S1.next := S.next
S2.next := S.next
S.code := E.code || gen (E.true’:’) ||

 S1.code || gen (‘goto’ S.next) ||
 gen (E.false ‘:’) || S2.code

Here we generate two new labels
E.true and E.false which will be

the labels for the statements
beginning of S1 and S2
respectively. After executing S1,

S2 need to be skipped and if S1 is
skipped after executing S2, the

statement corresponding to the
next of S need to be executed.
This is done as assigning S1 and

S2’s next as S.next. The code
corresponding to S is E.code

followed by E.true label
generation, then S1.code then
generating a goto(s.next), which

is to skip S2’s code and
generating the E.false label

followed by S2.code

25.1.3 Three-address code for while loops

The schematic for generating three-address code for statements involving ‘while’ loop is given in

figure 25.3. As discussed already, even in this scenario, the expression E needs to be executed

first and hence the code corresponding to E is generated first. The value of the expression is

evaluated and if it is found to be “true” the statement S1 corresponding to the body of the ‘while’

is executed. The body of the ‘while’ will have options to change the variable involved in the

expression and once again the expression is evaluated. If the expression is false, the statement

following the while block is executed.

Figure 25.3 Schematic for while loop’s control flow

Here one more attribute is used for the statement S – ‘begin’. This begin points to the first line of

the expression E which is part of the while block and is mandatory as the expression needs to be

evaluated multiple times to iterate through the while loop. Hence, S.begin and E.true are two

new labels and E.false is assigned as S.next as in the if-then scenario. The semantic rules are

given in Table 25.3.

Table 25.3 Schematic rules for while loop

Production Semantic Rules Inference

S  while E do S1 S.begin := newlabel
E.true := newlabel

E.false := S.next
S1.next := S.begin
S.code := gen (S.begin ‘:’) || E.code ||

 gen (E.true’:’) || S1.code ||
 gen (‘goto’ S.begin)

Two new labels S.begin which
points to the expression’s first line

and E.true which points to the
beginning of the statement S1 is
generated. Expression’s false

should skip the body of the while
and should go to the statement

following the statement S and
hence E.false is assigned S.next.
The next of the statement S1 is

assigned as S.begin as the exit
from the while block if from

S.begin only. Thus we first
generate the label S.begin and then
generate code for E, followed by

the E.true label, then code for S1,
then goto to S.begin.

25.1.4 Three-address code for do-while loops

The schematic for generating three-address code for statements involving ‘do-while’ loop is

given in figure 25.4. In this scenario, the body of the statement S1 is executed first without

considering the expression’s true or false values. After running the body of the loop once, we

check and execute the expression E. True code corresponding to E is generated then and if the

value of the expression is found to be “true” the statement S1 corresponding to the body of the

‘do-while’ is executed. The body of the ‘do-while’ will have options to change the variable

involved in the expression and once again the expression is evaluated. If the expression is false,

the statement following the do-while block is executed.

Figure 25.4 Schematic for do-while loop’s three address code

In this scenario, we again generate the S.begin label to indicate the first line corresponding to

S1.begin which is also the same as the E.true label. Table 25.4 indicates the semantic rules for

the three-address code generation based on the schematic of figure 25.4

Production Semantic Rules Inference

S  do S1 while E S.begin := newlabel
E.true := S.begin

E.false := S.next
S.code := S1.code || E.code ||

 gen (E.true ‘:’) ||
 gen (‘goto’ S.begin)

We first generate a new label as S.begin.
E.true is also assigned as this S.begin.

E.false is assigned as S.next. The code for
S is given as generating S.begin label

followed by code for S1, followed by code
for E and generating goto to S.begin

The sections 25.1.1 to 25.1.4 discussed the various semantic rules for, if- then, if-then-else, while,

do-while loops. A ‘for’ loop construct may be considered as a ‘while’ construct and this can be

used to generate 3-address code

25.2 Control flow with Boolean expression

In the previous module we discussed about how to generate three-address code for Boolean

expressions. We had generated two new variable and one was set to value ‘0’ if the expression is

false and other set to ‘1’ if the expression is true. However, we could avoid generating code for

the Boolean expression based on the logical operators if they are connected by one. Avoiding

generation of code for some expression in a Boolean expression is referred to as short circuit

based code generation.

Short circuit avoids computing the full expression involving logical operators. Consider the

example where the expression is given by “a > b” . The corresponding code for this expression

would be

100 If a > b goto E.true

 101 goto E.false

This is different from creating a temporary variable and assigning it 0 / 1. In other words if an

expression E is given as E1 or E2 where ‘or’ is a logical operator, then if E1 is true, then this can

directly be associated to E.true and we could skip generating code for E2. However, if E1 is false

then E2 need to be evaluated. The table 25.5 summarizes the various semantic rules associated

by incorporating this short circuit information to generate three-address code.

Table 25.5 Short-circuit based three-address code generation

Production Semantic Rule Inference

E  E1 or E2 E1.true : = E. true
E1.false := newlabel

E2.true := E.true
E2.false := E.false
E.code := E1.code || gen (E1.false ‘:’)

||E2.code

Instead of creating newlabel, we
directly assign E1.true to E.true.

This avoids generating code for
E2. If E1 is false we generate a
new label and generate code for

E2 and if it is true we assign
E.true to E2.true. If E2 is false,

we assign false for the entire
expression. Thus the code
corresponding to E is E1.code

followed by generating a label for
E1’s false followed by E2.code

E  E1 and E2 E1.true : = newlabel

E1.false := E.false
E2.true := E.true

As the operator here is ‘and’ if E1

is false we don’t evaluate E2 and
assign the expression E as false.

E2.false := E.false
E.code := E1.code || gen (E1.true ‘:’)
|| E2.code

Thus if E1 is true, we generate a
new label and if E1 is false we
evaluate the entire expression as

false. If E2 is true, we would have
reached this step only if E1 is true

and hence expression E is true.

E  not E1 E1.true : = E. false
E1.false := E.true

E.code := E1.code

There is no short-circuit here and
is the same as the simple code

generation. We swap the true and
false of E and E1.

E  (E1) E1.true : = E. true
E1.false := E.false

E.code := E1.code

There is no short-circuit here and
the true and false of E1 and E are

same

E  id1 relop id2 E.code :=
 gen (‘if’ id1.place relop.op id2.place

‘goto’ E.true) || gen (‘goto’ E.false)

This is the basic expression. We
generate the expression followed

by two goto’s, one for true and
false

E true E.code := gen (‘goto’ E.true) Basic value of true expression E

results in generating code as goto
E.true

E  false E.code := gen (‘goto’ E.false) Basic value of false expression E
results in generating code as goto

E.false

Example 25.1 consider the expression a < b or c < d and e < f

 E

 E1 or E2

 a < b E3 and E4

 c < d e < f

The following is a sequence of code generation based on the understanding.

• E1.true = E.true

• false label for E1

• true label for E3

• E3’s false is E2’s false and E’s false

• E4’s true is true for E

• E4’s false is E’s false

Based on the above sequence, we adopt a bottom up approach. Expression E1 is a < b. Hence we

need to generate based on “gen (‘if’ id1.place relop.op id2.place ‘goto’ E.true) || gen (‘goto’

E.false)”

Code Comments

if a < b goto Ltrue Ltrue is the entire expression’s true. If this is true, E2 need not
be evaluated

goto L1 L1 is the label corresponding to E1’s false

L1: if c < d goto L2

c < d is the expression of E3 and hence if it is true we need to check

whether the expression E4’s true. L2 is the place for E3’s true

goto Lfalse Lfalse is the entire expression’s false. We have reached this point when
E1 is false and E3 is false. E3 and E4 are connected using ‘and’
operator. Hence if E3 is false the entire expression is false

L2: if e < f goto Ltrue

e < f is the expression of E4 and if it is true, we have encountered truth
of E3 ‘and’ E4. Hence, the entire expression E2 is true and so we goto
the expression E’s truth Ltrue

goto Lfalse We have reached this point after false of all expressions and so we

conclude that the entire expression is false.

Example 25.2 Consider the following code segment

while a < b
if c < d then

 x : = y + z
 else
 x : = y - z

while E1 do S1

 a < b if E2 then S2 else S3

 c < d

The statement S2 corresponds to x:= y+z and that of S3 is x := y-z. The following is the

sequence to generate code

• E1.code – if a < b goto true label

 goto false label
• True label is the body of the while

• False label is the S.next
• E2.code – if c < d goto true label

 goto false label

 True label is x : = y + z and false label x:=y-z

• This should be done in the context of while and if-else
The following would be the code sequence:

Code Comments

L1: if a < b goto L2 L1 corresponds to S.begin of the while. We generate

label L2 as E.true and generate goto Lnext to follow
with the next statement after the while if E is false

goto Lnext If E is false we skip the body of the while and goto

the statement following the while block

L2: if c < d goto L3 Here, we need to evaluate the if- then-else statement.
L3 is the true of the expression c<d

goto L4 L4 is the false of the expression c < d

L3: t1 : = y+ z In L3 we evaluate the body S2 of the if-then else

block

x := t1 S2 is evaluated

goto L1 goto L1 corresponds to goto S.begin of the while to
continue and skipping S3.

L4: t2 := y – z In L4 we evaluate the body S3 of the if-then-else

block

x := t2

goto L1 Goto S.begin of the while to continue

Lnext: The place to continue after the expression E of the
while block fails

Summary: In this module we looked at generating three-address code for the control flow

statements if-then, if-then-else, do-while and while. We also looked at incorporating short circuit

code in generating 3-address code for Boolean expressions and integrating this with the control

flow statements. The next module will discuss about another important task in Boolean

expressions called back patching.

