

e-PGPathshala

Subject : Computer Science

Paper: Data Structures

Module: Introduction to Abstract Data Types

Module No: CS/DS/1

Quadrant 1 – e-text

Welcome to the e-PG Pathshala Lecture Series on Data Structures. This time we are

going to talk about data structures from a different perspective

Learning Objectives

The learning objectives of the introductory module are as follows:
• To appreciate Programming perspectives
• To understand Programming Design principles
• To know about the different Data Types
• To understand Abstract data types

1.1 Introduction

Though most of you would have studied Data Structures, in this course we will be

looking at Data Structure from a new perspective – the perspective of Abstract Data

Type. Before we understand the concept of abstract data types let us relook at

Programming which is essentially problem solving using a computer system.

However though computers today are used to solve very complex problems –

programming is not magic, the maxim remains that you cannot make a computer do

something if you do not know how to do it yourself. Before you start programming,

you need to understand the problem. Some of the important tips are, find out as

much as you can about the problem by talking to the problem presenter, as far as

possible reuse what has been done before and design the program expecting future

reuse. The first step in understanding the problem is breaking the complex problems

into sub-problems and then trying to determine what previous attempts at solving this

problem or similar problems have succeeded and what attempts have failed and why

they have failed. In order to appreciate the concept of Abstract Data Types we must

first consider some important design principles.

1.2Design Principles

There are some principles that are to be followed when designing a good program.

These include abstraction, encapsulation, modularity and hierarchy. Let us consider

each of the principles one by one.

1.2.1 Abstraction

Here are two general definitions of Abstraction.

“Abstraction arises from a recognition of similarities between certain objects,

situations, or processes in the real world, and the decision to concentrate upon those

similarities and to ignore for the time being the differences.” Tony Hoare

“An abstraction denotes the essential characteristics of an object that distinguish it

from all other kinds of objects and thus provide crisply defined conceptual

boundaries, relative to the perspective of the viewer.” Grady Booch

In other words abstraction is also described as the purposeful suppression, or hiding
of some details of a process or an artifact, in order to bring out more clearly other
aspects, details, or structure. In the context of programming the use of Abstract Data
Types (which we will discuss later) or the use of objects encourages abstraction.The
principle of Abstractioncan be described as the process of determining the relevant
and essential properties and features of an entity or what we call an object while
ignoring nonessential details with respect to the way the entity is implemented and
also focuses on obtaining interfaces (outside view) of objects.Moreover relevant
properties are defined by how the entity is to be used and manipulated. For example,
an auto salesperson views a car from the standpoint of its selling features, while a
mechanic views the car from the standpoint of the systems that require maintenance.

1.2.2 Encapsulation

Here are two definitions of Encapsulation.

“Encapsulation is the process of compartmentalizing the elements of an abstraction

that constitute its structure and behavior; encapsulation serves to separate the

contractual interface of an abstraction and its implementation.” Grady Booch

“Encapsulation is a mechanism used to hide the data, internal structure, and

implementation details of an object. All interaction with the object is through a public

interface of operations.” Craig Larman

Encapsulation is a mechanism by which we restrict the access to some of the
object's components, as well as binding the data and methods operating on the data.
The principle of Encapsulation can be described as the separation of objects based
on external and internal aspects. In other words only the external aspects of an
object need to be visible to other objects in the system, while the internal aspects are
details that should not affect other parts of the system and need not be visible to
them. Encapsulation is a technique for packaging the information in such a way as to
hide what should be hidden, and make visible what is intended to be visible that
ishiding implementation details.Hiding the internal aspects of an object essentially
means that they can be changed without requiring changes to other system parts.

Figure 1.2 Management hierarchy

1.2.3 Hierarchy

The principle ofHierarchy can be described as an useful way of ordering

abstractions from the most general to least general based on some relationship

between them. Hierarchies can help us understand complex objects. Hierarchy

makes all the abstractions easier to understand because it exposes the relationship

of the characteristics and behaviors they have in common. An example of a

management hierarchy is shown in Figure 1.2 which is based on who reports to who.

A specific type of hierarchical ordering based on natural relationships is called

taxonomy. An example of taxonomy is that of musical instruments that organizes

instruments by how they produce their sound.Before we define Abstract Data Types

let us recall the description of traditional data structures.

1.3Data Structures

Let us recall the description of data structures. Data structures are a systematic way

of organizing and manipulating data. In other words adata structure structures data,

usually more than one piece of data and should provide legal operations on the

data.There are aspects of data organization and functions for manipulating data.

Data structures are conceptual and concrete ways to organize data for efficient

storageand manipulation. Data structures are basically used in the implementation of

efficient algorithms.

1.3.1 Important Data Structures

Before we begin discussing the details of Abstract Data types or ADT as they are

called let us list some common linear data structures some of which we will study

later on from the perspective of Abstract Data Types. These include fixed-size

arrays, variable size linked-lists, stacks where we add to top and remove from top,

queues where we add to back (rear) and remove from front and priority queue where

we add anywhere but remove the element with highest priority. Next we go on to

discuss the concept of a data type before go on to discuss the details of abstract

data types.

1.4 What is a data type?

Data types are associated with a set of entities or objects and a set of operations.

Each object is called an instance of the data type. Some of these objects are

sufficiently important to be provided with a special name.Operations can be realized

via operators, functions, procedures, methods, and special syntax (depending on the

implementing language). Of course each object must have some representation (not

necessarily known to the user of the data type) and each operation must have some

implementation (also not necessarily known to the user of the data type). Data types

are basically of two types, opaque data typesand transparent data types.

Opaque data types are data types in which the representation is not known to the

user. Representation can be changed without affecting the user since these data

types encapsulate the operations. Without encapsulation you cannot have opaque

data types. This forces the program designer to consider the operations more

carefully and allows less restrictive designs which are easier to extend and modify.

Design is generally carried out with the expectation that the data type will be placed

in a library of types available for everyone to use.

Transparent data types are data types in which the representation is profitably

known to the user, in other words the encoding is directly accessible and/or

modifiable by the user. This allows the user to manipulate the data types because

the representation is known to the user. In the next section we go on to discuss

abstract data types.

1.5Abstract Data Types -Concept of Abstraction

Let us first recall the notion of abstraction. An abstraction is a view or representation

of a data type that includes only the most significant attributes. The concept of

abstraction from this viewpoint means you know what a data type can do but the

details of how it is done is hidden.

The concept of abstraction is fundamental to programming. Programming languages

generally have supported process abstractionin the form of subprograms and some

of the more recent programming languages do also support dataabstraction.In

simple terms with data abstractionwhat you can do with the data is separated from

howit is represented. Data abstraction, or abstract data types, is a programming

methodology where one defines not only the data structure to be used, but the

processes to manipulate that data structure.

An Abstract Data Type is one that is defined in terms of the operations that it

supports (i.e., that can be performed upon it) rather than in terms of its structure or

implementation. An abstract data type is a user-defined data type that satisfies the

following two conditions. The first condition is that the representation and operations

of the type are defined in a single syntactic unit. The second condition is that the

representation of the type is hidden from the program units that use these objects so

that the only operations possible are those provided in the data type's definition.

1.5.1 Advantages of Data Abstraction

Now let us look at some advantages of data abstraction. The advantage of the first
conditionof data abstraction (knowing what a data can do) is better program
organization, modifiability(everything associated with a data structure is together),
and separate compilation. The advantage of the second condition (representation is
hidden) is reliability because by hiding the data representations, user code does
notdepend on the representation thus allowing the representation to be changed
without affecting user code.

1.6Abstract Data Type- ADT

Some data is associated with a set of operations and mathematical abstractions
have been an integral part of programming languages, abstractions which we have
been using without giving it much thought like integer,Boolean, etc. The basic idea
ADTs is a logical view of the data objects together with specifications of the
operations required to create and manipulate them. Designing and coding an ADT
once enables the reuse of the ADT. Any changes in the implementation are
transparent to the other modules. Just like an algorithm is described using pseudo-
code, a data structure can be described using ADT. The meaning of „abstract‟ in
Latin means to „pull out‟ and in our context abstract essentially means to pull out the
essentials and to defer or hide the details. In other words abstraction emphasizes
essentials and defers the details, making engineering artifacts easier to use. Figure
1.3 shows the difference between primitive data types and the abstract data types.

In other words ADT can be described as follows :
1. Declaration of data
2. Declaration of operations
3. Encapsulation of data and operations

Summing up ADT is a type for encapsulating related data and is abstract in the

sense that it hides distracting implementation details. Now what are the

programming languages that naturally support ADTs? Objects are a perfect

programming mechanism to create ADTs.Given below are some examples of ADT:

Set ADT
• A set of elements
• Operations: union, intersection, size and complement

Queue ADT
• A set of sequences of elements
• Operations: create empty queue, insert, examine, delete, and destroy queue

A very important point to be noted with respect to ADTs is that two ADTs are
different if they have the same underlying model but different operations. Thus for
example a different set ADT can be defined with only the union and find operations.
It is to be noted that the appropriateness of an implementation depends very much
on the operations to be performed.

1.6.1 Need for ADT

As we have already discussed, ADT allows implementation to be changed without

violating ADT definitions. ADTs provide us a standard list of structures to use and

study. They give us building blocks and tools which can conveniently be used by

programmers. ADT is the foundation for the design of Object Oriented Programming

languages like C++, Java etc. They adopt concepts of abstraction, encapsulation,

modularity, hierarchy which comes with their own advantages.

Figure 1.3 Primitive Data Type vs. Abstract Data Types

1.6.2 Pros and Consof ADT

Now let us list some of the advantages of the use of ADT. One of the important

advantages is that implementation of the ADT is separate from its use. By design

ADT is modular and we can design one module for one ADT. ADTs are easier to

debug, and also makes it easier for several people to work simultaneously. The

Code written for an ADT can be reused in different applications and it allows the

concept of information hiding. Logical unit can be designed to do a specific job and

implementation details can be changed without affecting user programs. All the

above advantages allowsrapid prototying since the prototype can be designed with

simple ADT implementations, then tuned later when necessary. One of the

disadvantages of ADT based design is the loss of efficiency since the representation

and implementation details are hidden and the knowledge of these details cannot be

exploited to improve efficiency.

1.7Basic Concepts of ADT

Let us revisit some of the concepts of abstraction , but now look at them from the

viewpoint of ADT.

1.7.1Modularity

The first concept we will discuss is the concept of modularity. Modularity keeps the

complexity of a large program manageable by systematically controlling the

interaction of its components. It helps to isolates errors and eliminates redundancies.

A modular program is essentially easier to write, easier to read and easier to modify.

1.7.2Information Hiding

The next concept we discuss is information hiding. ADT hides the implementation

details of the operations and the data from the users of the ADT. In other words

makes these details inaccessible from outside the module. Users can use the

operations of an ADT without knowing how the operation is actually implemented.

Examples include a deck of playing cards and a set of index cards containing contact

information and telephone numbers stored in your cellular phone.

1.7.3Data Abstraction

The most important concept of an ADT is data abstraction. It asks you to think what

you can do to a collection of data independently of how you do it. It allows you to

develop each data structure in relative isolation from the rest of the solution and is

essentially a natural extension of procedural abstraction.

1.7.4Encapsulation

In the context of ADT encapsulation allows operation on an ADT only by calling the

appropriate function. There will be no mention of how the set of operations is

implemented. In essence the definition of the type and all operations on that type can

be localized to one section of the program. After this point we can treat the ADT as a

primitive type since we are no longer concerned with the underlying implementation.

1.8Design of Abstract Data Type

Thefirst step in the design process is the specification of the problem where the

design of an ADT should evolve naturally during the process. The questions to be

asked while designing the ADT are the type of data the problem requires and the

associated operations required. For complex abstract data types, the behavior of the

operations can be specified using axioms. An example of an axiom is given in Figure

1.4.

 Axiom: A mathematical rule

 Ex. : (aList.createList()).size() = 0

 Figure 1.4 Example of an Axiom

The second step in the design is the development of a real or imaginary application

to test the specification.Missing or incomplete operations are found as a side-effect

of trying to use the specification in the application.

The third and final step is the implementation of the ADT where we decide on a

suitable representation, implement the operations and finally test, debug, and revise

the code.

1.9 Typical Operations on Abstract Data Types

Before we complete this module we will look at some typical operations that will

define ADTs irrespective of the type of ADTs. These include creating a data

collection, adding data to a data collection, removing data from a data collection and

asking questions about the data in a data collection.

Create operation
It is always necessary to create an object before it can be used. For example, in
Java this is done using the class constructors.

Copy operation
The availability of this operation depends on the particular ADT. In many cases it is
not needed or desired. If present, the meaning (semantics) of the operation also
depends on the particular ADT. In some cases copy means make a true copy of the
object and all its data fields, and all their data fields, and so on, and in other cases it
may mean to simply make a new reference to an object.In other words, the reference
to the object is being copied, not the object itself. In this case there is only one object
and it is shared among all the references to it. This makes sense for objects that
occupy large amounts of memory and in many other cases as well. Both types of
operation can even be included in the same ADT. In some languages the copy
operation can have explicit and implicit versions. For example in Java the implicit
operation, defined by assignment or method argument passing, always copies
references but it is possible to make other kinds of explicit copies using a copy
constructor or by overriding the clone method inherited from the Object class.

Destroy operation
Since objects take up space in memory it is necessary to reclaim this space when an
object is no longer needed. This operation is often called the destroy operation. In
Java there is no explicit destroy operation since the built-in garbage collector takes
on this responsibility: when there are no more references to an object it is eventually
garbage-collected.

Modification operations
Every object of an ADT encapsulates data and for some ADTs we need operations
that can modify this data. These operations act on objects and change one or more
of their data fields. Sometimes they are called mutatoroperations. If an ADT has no
mutator operations then the state cannot be changed after an object has been
created and the ADT is said to be immutable, otherwise it is mutable.

Inquiry operations
An inquiry operation inspects or retrieves the value of a data field without
modification. It is possible to completely hide all or part of the internal state of an
object simply by not providing the corresponding inquiry operations.

1.10 Pre- conditions and post-conditions

When working with ADTs, pre-conditions and post-conditions effectively clarifies and
documents your thinking process. In addition, the operation definition, along with the
pre and post-conditions, supply all the information required by others to utilise the
interface of the data type. In other words, specifying what the operation does along

with the pre and post-conditions enables procedural abstraction, an important
concept of ADT.

Pre-condition statement or set of statements outlines a condition that should be true,
or conditions that should be true, when the operation is called. The operation is not
guaranteed to perform the way it should unless the preconditions have been met.
On the other hand, post-condition statement or statements describe the condition
that will be true when the operation completes its task. If the operation is correct and
the pre-condition(s) had been met, then the post-condition is guaranteed to be true.
In addition, an operation is also associated with invariants that specify properties of
the ADT that are not changed by this operation. Let us assume that the operation is
specified as a function. Pre-conditions usually focus on the inputs to a function while
post-conditions usually focus on the output of a function and any side effect.

This type of specification where pre-conditions and post-conditions are specified
explicitly is known as 'programming by contract'. The pre and post-conditions define
what the operation expects before it is executed and what it promises to have done
when it finishes. No interface specification is complete without pre and post-
conditions. What you are doing is forming a contract between the ADT and its user.
The pre-conditions define a state of the which the client guarantees will be true
before calling any operation, whereas the post-conditions define the state that will be
guaranteed to be true when it completes. Pre and post-conditions are like a
statement in law; they need to be precisely stated, and are of no use if ambiguous.

When we take an example of an operation then we can define it as function that

takes a parameter x and returns the square root of x. The precondition stated here is

that x must be greater than or equal to zero for this operation to give the expected

output while post-condition specifies what is expected to be true after the operation

is completed. Given below (Figure 1.4) is an example that illustrates this concept.

Example
Void write_sqrt(double x)
// Precondition: x >= 0.
// Postcondition: The square root of x has
// been written to the standard output.
...
Which of these function calls meet the precondition?
write_sqrt(-10);
write_sqrt(0);
write_sqrt(5.6);
Here the first function alone does not satisfy the precondition.

Figure 1.4 Example of Precondition

 It is the responsibility of the person who uses the operation to ensure that the

precondition is valid when the function is called and actually counts on the

precondition being valid. Similarly the post condition must be valid after the function

is completed.

Later on when these ADTs are actually implemented using a specific representation

careful programmers ensure that when a function is written they make every effort to

detect when a precondition has been violated. When such a violation is detected, the

programmer makes sure that an error message is printed and the program is halted,

rather than causing a disaster due to precondition violation.

1.10.1 Advantages of Using Preconditions and Post conditions

There are some advantages when such pre-conditions and post-conditions are

explicitly specified. These statements succinctly describe the behaviour of a function

without cluttering up the thinking with details of how the function works. This allows

programmers to later re-implement the function in a new way, however programs

that depend only on the precondition / postcondition will still work with no changes.

1.11 Language Requirements for ADTs

As is the case with process abstraction, ADTs can be supported directly by

programming languages. Some of the requirements that a programming language

should posses in order to program using ADTs include the availability of a syntactic

unit in which to encapsulate the type definition, a method of making type names and

subprogram headers visible to the clients, while hiding actual definitions and some

primitive operations that must be built into the language processor. Objects are one

way to implement ADTs.

Summary

• Discussed important programming design principles
• Understood the different data types
• Explained Abstract Data types and their usage
• Listed the various Data Structures

