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MODULE - 2: Simplex Method for Solving
LPP and Big-M Method

2.1 Simplex Method

In 1947, George Dantzig developed an efficient method called simplex method for

solving LP problems having many variables. The concept of simplex method is similar

to the graphical method in which extreme points of the feasible region are examined in

order to find the optimal solution. Here, the optimal solution lies at an extreme point

of a multi-dimensional polyhedron. The simplex method is based on the property

that the optimal solution, if exists, can always be found in one of the basic feasible

solutions.

2.1.1 Canonical and Standard Forms of An LPP
An LPP is said to be in canonical form when it is expressed as

Maximize Z = c1x1 + c2x2 + ...+ cnxn

subject to

ai1x1 + ai2x2 + ...+ aijxj + ...+ ainxn ≤ bi , i = 1,2, · · · ,m

x1,x2, ...,xn ≥ 0

The characteristics of this form are as follows:

(i) The objective function is of maximization type (Maximize Z). In case of Minimize

Z, it can be written as Maximize (−Z).
(ii) All constraints are of “≤” type, except the non-negative restrictions.
(iii) All variables are non-negative.
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An LPP in the following form is known as standard form:

Maximize (or Minimize) Z = c1x1 + c2x2 + ...+ cnxn

subject to

ai1x1 + ai2x2 + ...+ aijxj + ...+ ainxn = bi , i = 1,2, · · · ,m

and x1,x2, ...,xn ≥ 0

or

Maximize( or Minimize) Z = cx

subject to

Ax = b

x ≥ 0 (null vector)

where c = (c1, c2, · · · , cn) an n-component row vector; x = [x1,x2, · · · ,xm] anm-component

column vector; b = [b1,b2, · · · ,bm] an m-component column vector and the matrix

A = (aij)m×n. The characteristics of this form are as follows:

(i) All constraints are expressed in the form of equations, except the non-negative re-

strictions.

(ii) The RHS of each constraint equation is non-negative.

2.1.2 Slack and Surplus Variables
• Slack variable - A variable which is added to the LHS of a “≤” type constraint to

convert the constraint into an equality is called slack variable.

• Surplus variable - A variable which is subtracted from the LHS of a “≥” type con-

straint to convert the constraint into an equality is called surplus variable.

2.1.3 Basic Solution
Consider a set of m linear simultaneous equations of n (n > m) variables

Ax = b,

where A is an m × n matrix of rank m. If any m ×m non-singular matrix B is chosen

from A and if all the (n −m) variables not associated with the chosen matrix are set

equal to zero, then the solution to the resulting system of equations is a basic solution

(BS).

Basic solution has not more than m non-zero variables called basic variables. Thus

the m vectors associated with m basic variables are linearly independent. The vari-

ables which are not basic, are termed as non-basic variables. If the number of non-zero



basic variables is less than m, then the solution is called degenerate basic solution. On

the other hand, if none of the basic variables vanish, then the solution is called non-

degenerate basic solution. The possible number of basic solutions in a system of m

equations in n unknowns is nCm = n!
m!(n−m)! .

Theorem 2.1: The necessary and sufficient condition for the existence and non-degeneracy

of all the basic solutions of Ax = b is that every set of m columns of the augmented matrix

[A, b] is linearly independent.

Proof: Let us suppose that all the basic solutions exist and none of them is degenerate.

Then, if a1,a2, · · · · · · ,am be one set of m column vectors of A, corresponding to the set

of basic variables x1,x2, · · · · · · ,xm, we have

x1a1 + x2a2 + · · · · · ·+ xmam = b

xi , 0, i = 1,2, · · · · · ·m.

Hence, by the replacement theorem of vector, a1 can be replaced by b in the basis

(a1,a2, · · · · · · ,am) as x1 , 0. Then the set of vectors {b,a2, · · · · · · ,am} forms a basis. Sim-

ilarly, a2 can be replaced by b in the basis as x2 , 0 and therefore, {a1,b,a3, · · · · · · ,am}
forms a basis. Proceeding in this way, we can show that b along with any (m−1) vectors
of A forms a basis of Em and are linearly independent. Thus, every set of m columns

of [A, b] is linearly independent. Hence the condition is necessary.

Next, we suppose that the set of vectors {a1,a2, · · · · · · ,am} of m columns of [A, b]

is linearly independent. Hence b can be expressed as the linear combination of these

vectors as

b = x1a1 + x2a2 + · · · · · ·+ xmam

where (x1,x2, · · · · · · ,xm) is the corresponding basic solution. Now, if one of them, say

x1, is equal to zero, then

0 = −1b+ x2a2 + · · · · · ·+ xmam

so the vectors (b,a2, · · · · · · ,am) are linearly dependent m column vectors of the aug-

mented matrix [A, b] which is a contradiction to the assumption. Thus, since b,a2, · · ·
· · · ,am are linearly independent, the coefficient x1 of a1 cannot vanish as b can replace

a1 maintaining its basic character. By similar argument, vectors a1,b,a3, · · · · · · ,am are

linearly independent and the coefficient x2 of a2 cannot vanish. Thus we see that none

of xi ’s can vanish and the solution is non-degenerate. Hence all basic solutions exist

and are non-degenerate.



2.1.4 Basic Feasible Solution
A solution which satisfies all the constraints and non-negativity restrictions of an LPP

is called a feasible solution. If again the feasible solution is basic, then it is called a

basic feasible solution (BFS).

Theorem 2.2: The necessary and sufficient condition for the existence and non-degeneracy

of all possible basic feasible solutions of

Ax = b, x ≥ 0

is the linear independent of every set of m columns of the augmented matrix [A, b], where

A is the m×n coefficient matrix.

The proof is omitted as it is similar to that of Theorem 2.1

Example 2.1: Find the basic feasible solutions of the following system of equations

2x1 +3x2 − x3 +4x4 = 8

x1 − 2x2 +6x3 − 7x4 = −3

x1,x2,x3,x4 ≥ 0.

Solution: The given system of equations can be written as a1x1+a2x2+ · · · · · ·+a4x4 = b

where a1 = [2, 1], a2 = [3, −2], a3 = [−1, 6], a4 = [4, −7] and b = [8, −3]. The maximum

number of basic solutions that can be obtained is 4C2 = 6. The six sets of 2 vectors

out of 4 are

B1 = [a1, a2], B2 = [a1, a3], B3 = [a1, a4]

B4 = [a2, a3], B5 = [a2, a4], B6 = [a3, a4].

Here |B1| = −7, |B2| = 18, |B3| = −18, |B4| = 16, |B5| = −13, and |B6| = −17. Since none of
these determinants vanishes, hence every set Bi of two vectors is linearly independent.

Therefore, the vectors of the basic variables associated to each set Bi, i = 1,2,3,4,5,6

are given by



xB1 = B−11 b = −1
7

 −2 −3
−1 2


 8

−3

 =
 1

2


xB2 = B−12 b =

1
13

 6 1

−1 2


 8

−3

 =
 45/13

−14/13


xB3 = B−13 b = − 1

18

 −7 −4
−1 2


 8

−3

 =
 22/9

7/9


xB4 = B−14 b =

1
16

 6 1

2 3


 8

−3

 =
 45/16

7/16


xB5 = B−15 b = − 1

13

 −7 −4
2 3


 8

−3

 =
 44/13

−7/13


and xB6 = B−16 b = − 1

17

 −7 −4
−6 −1


 8

−3

 =
 44/17

45/17


From above, we see that the possible basic feasible solutions are x1 = [1, 2, 0, 0],

x2 = [22/9, 0, 0, 7/9], x3 = [0, 45/16, 7/16, 0] and x4 = [0, 0, 44/17, 45/17] which are

also non-degenerate. The other basic solutions are not feasible.

Theorem 2.3 (Fundamental Theorem of Linear Programming): If a linear program-

ming problem admits of an optimal solution, then the optimal solution will coincide with at

least one basic feasible solution of the problem.

Proof: Let us assume that x∗ is an optimal solution of the following LPP :

Maximize z = cx

subject to Ax = b, x ≥ 0 (2.1)

Without any loss of generality, we assume that the first p components of x∗ are non-

zero and the remaining (n− p) components of x∗ are non-zero. Thus

x∗ = [x1,x2, · · · ,xp,0,0, · · · ,0].

Then, from (2.1), Ax∗ = b gives
∑
j=1

paijxj = bi , i = 1,2, · · · ,m.

Also, A = [a1,a2, · · · ,ap,ap+1, · · · ,an] gives

a1x1 + a2x2 + · · ·+ apxp = b. (2.2)

Also z∗ = zmax =
p∑

j=1

cjxj . (2.3)



Now, if the vectors a1, a2, · · · , ap corresponding to the non-zero components of x∗ are

linearly independent, then, by definition, x∗ is a basic solution and hence the theorem

holds in this case. If p =m, then the basic feasible solution is non-degenerate. On the

other hand, if p < m then it will form a degenerate basic feasible solution with (m− p)
basic variables equal to zero.

However, if the vectors a1, a2, · · · , ap are not linearly independent, then they must

be linearly dependent and there exists scalars λj , j = 1,2, · · · ,p of which at least one of

the λj ’s is non-zero such that

λ1a1 +λ2a2 + · · ·+λpap = 0. (2.4)

Suppose that at least one λj > 0. If the non-zero λj is not positive, then we canmultiply

(2.4) by (−1) to get a positive λj .

Let µ = Max
1≤j≤p

{
λj

xj

}
(2.5)

Then µ is positive as xj > 0 for all j = 1,2, · · · ,p and at least one λj is positive. Dividing

(2.4) by µ and subtracting it from (2.2), we get(
x1 −

λ1

µ

)
a1 +

(
x2 −

λ2

µ

)
a2 + · · ·+

(
xp −

λp

µ

)
ap = b

and hence x1 =
[(
x1 −

λ1

µ

)
,

(
x2 −

λ2

µ

)
, · · · ,

(
xp −

λp

µ

)
,0,0, · · · ,0

]
(2.6)

is a solution of the system of equations Ax = b.

Again from (2.5), we have

µ ≥
λj

xj
for j = 1,2, · · · ,p

or xj −
λj

µ
≥ 0 for j = 1,2, · · · ,p

This implies that all the components of x1 are non-negative and hence x1 is a feasible

solution of Ax = b, x ≥ 0. Again, for at least one value of j, we have, from (2.5),

xj −
λj

µ = 0, for at least one value of j.

Thus we see that the feasible solution x1 will contain one more zero than it was

shown to have in (2.6). Thus, the feasible solution x1 cannot contain more than (p−1)
non-zero variables. Therefore, we have shown that the number of positive variables

giving an optimal solution can be reduced.

Now, we have to show that even after this reduction x1 remains optimal. Let z′ be

the value of the objective function for this value of x. Then

z′ = cx1 =
p∑

j=1

cj

(
xj −

λj

µ

)
=

p∑
j=1

cjxj −
p∑

j=1

cj
λj

µ
= z∗ − 1

µ

p∑
j=1

cjλj , by (2.3) (2.7)



Now, if we can show that
p∑

j=1

cjλj = 0 (2.8)

then z′ = z∗ and this will prove that x1 is an optimal solution.

We assume that (2.8) does not hold and we find a suitable real number γ , such that

γ(c1λ1 + c2λ2 + · · ·+ cpλp) > 0

i.e., c1(γλ1) + c2(γλ2) + · · ·+ cp(γλp) > 0.

Adding (c1x1 + c2x2 + · · ·+ cpxp) to both sides, we get

c1(x1 +γλ1) + c2(x2 +γλ2) + · · ·+ cp(xp +γλp) > c1x1 + c2 + x2 + · · ·+ cpxp = z∗ (2.9)

Again, multiplying (2.4) by γ and adding to (2.2), we get

(x1 +γλ1)a1 + (x2 +γλ2)a2 + · · ·+ (xp +γλp)ap = b

so that

[(x1 +γλ1), (x2 +γλ2), · · ·+ (xp +γλp),0,0, · · · ,0] (2.10)

is also a solution of the system Ax = b.

Now, we choose γ such that

xj +γλj ≥ 0 for all j = 1,2, · · · ,p

or γ ≥ −
xj
λj

if λj > 0

and γ ≤ −
xj
λj

if λj > 0

and γ is unrestricted, if λj = 0.

Now (2.10) becomes a feasible solution of Ax = b, x ≥ 0.

Thus choosing γ in a manner

Max
j

λj > 0

{
−
xj
λj

}
≤ γ ≤

Min
j

λj < 0

{
−
xj
λj

}
we see, from (2.9), that the feasible solution (2.10) gives a greater value of the objective

function than z∗. This contradicts our assumption that z∗ is the optimal value and thus

we see that
p∑

j=1

cjλj = 0



Hence x1 is also an optimal solution. Thus we show that from the given optimal solu-

tion, the number of non-zero variables in it is less than that of the given solution. If

the vectors associated with the new non-zero variables is linearly independent, then

the new solution will be a basic feasible solution and hence the theorem follows.

If again the new solution is not a basic feasible solution, then we can further dimin-

ish the number of non-zero variables as above to get a new set of optimal solutions.

We may continue the process until the optimal solution obtained is a basic feasible

solution.

2.1.5 Simplex Algorithm
For the solution of any LP problem by simplex algorithm, the existence of an initial

BFS is always assumed. Here we will discuss the simplex algorithm of maximization

type LP problem. The steps for computation of an optimal solution are as follows:

Step 1: Convert the objective function into maximization type if the given LPP is

of minimization type. Also, convert all the m constraints such that bi ’s (i =

1,2, ...,m) are all non-negative. Then convert each inequality constraint into

equation by introducing slack or surplus variable and assign a zero cost co-

efficient to such a variable in the objective function.

Step 2: If needed, introduce artificial variable(s) and take (- M) as the coefficient of

each artificial variable in the objective function.

Step 3: Obtain the initial basic feasible solution xB = B−1b where B is the basis matrix

which is an identity matrix here.

Step 4: Calculate the net evaluations zj − cj = cBxBj - cj .

(i) If zj − cj ≥ 0 for all j then xB is an optimum BFS.

(ii) If at least one zj − cj < 0, then proceed to improve the solution in the next

step.

Step 5: If there are more than one negative zj − cj , then choose the most negative of

them. Let it be zk − ck for some j = k.

(i) If all aik < 0 (i = 1,2, ...,m), then there exists an unbounded solution to the

given problem.

(ii) If at least one aik > 0 (i = 1,2, ...,m) then the corresponding vector ak enters

the basis B. This column is called the key or pivot column.



Step 6: Divide each value of xB (i.e., bi) by the corresponding (but positive) number in

the key column and select a row which has the ratio non-negative andminimum,

i.e.,
xBr
ark

= Min
{
xBi
aik

;aik > 0
}

This rule is called minimum ratio rule. The row selected in this manner is called

the key or pivot row and it represents the variable which will leave the basic

solution. The element that lies in the intersection of key row and key column of

the simplex table is called the key or pivot element (say ark).

Step 7: Convert the leading element to unity by dividing its row by the key element

itself and all other elements in its column to zeros by making use of the relation:

ârj =
arj
ark

and x̂Br =
xBr
ark

, i = r; j = 1,2, ...n

âij = aij −
arj
ark

aik and x̂Bi = xBi −
xBr
ark

aik , i = 1,2, ....,m; i , r

Step 8: Go to step 4 and repeat the procedure until all entries in (zj − cj) are either

positive or zero, or there is an indication of an unbounded solution.

2.1.6 Simplex Table
The simplex table for a standard LPP

Maximize z = cx

subject to Ax = b

x ≥ 0

is given below:

where

B = (aB1, aB2, · · · , aBm) , basis matrix

xB = (xB1, xB2, · · · , xBm) , basic variables

cB = [cB1, cB2, · · · , cBm]

A =
(
aij

)
m×n

b = [b1,b2, · · · ,bm]

c = (c1, c2, · · · , cn)

x = (x1, x2, · · · , xn)



cj → c1 c2 ... cn

cB B xB b a1 a2 ... an

cB1 aB1 xB1 b1 a11 a12 ... a1n

cB2 aB2 xB2 b2 a21 a22 ... a2n

. . . . . . . .

. . . . . . . .

. . . . . . . .

cBm aBm xBm bm am1 am2 ... amn

zj − cj z1 − c1 z2 − c2 ... zn − cn

Table 2.1: Simplex table

Example 2.2: Solve the following LP problem by simplex method:

Minimize Z =x1 − 3x2 +2x3

subject to

3x1 − x2 +2x3 ≤ 7

− 2x1 +4x2 ≤ 12

− 4x1 +3x2 +8x3 ≤ 10

x1,x2,x3 ≥ 0

Solution: This is a minimization problem. Therefore, converting the objective func-

tion for maximization, we have Max Z1 =Min (−Z) = −x1+3x2−2x3. After introducing
the slack variables x4,x5 and x6, the problem can be put in the standard form as

Max Z1 =− x1 +3x2 − 2x3 +0x4 +0x5 +0x6

subject to

3x1 − x2 +2x3 + x4 = 7

− 2x1 +4x2 + x5 = 12

− 4x1 +3x2 +8x3 + x6 = 10

x1,x2,x3,x4,x5,x6 ≥ 0

Now, we apply simplex algorithm. The results of successive iteration are shown in

Table 2.2. Since zj−cj ≥ 0 for all j in the last iteration of Table 2.2, optimality condition

is satisfied. The optimal solution is x1 = 4, x2 = 5 and x3 = 0 and the corresponding

value of the objective function is (Z1)max = 11. Hence, the solution of the original

problem is x1 = 4, x2 = 5, x3 = 0 and Zmin = −11.



cj → -1 3 -2 0 0 0 Mini

cB B xB b a1 a2 a3 a4 a5 a6 Ratio

0 a4 x4 7 3 -1 2 1 0 0 -

0 a5 x5 12 -2 4 0 0 1 0 12/4=3

0 a6 x6 10 -4 3 8 0 0 1 10/3=3.33

zj − cj 1 -3 2 0 0 0

0 a4 x4 10 5/2 0 2 1 1/4 0

3 a2 x2 3 -1/2 1 0 0 1/4 0

0 a6 x6 1 -5/2 0 8 0 -3/4 1

zj − cj -1/2 0 2 0 3/4 0

-1 a1 x1 4 1 0 4/5 2/5 1/10 0

3 a2 x2 5 0 1 2/5 1/5 3/10 0

0 a6 x6 11 0 0 10 1 -1/2 1

zj − cj 0 0 12/5 1/5 16/20 0

Table 2.2: Simplex Table for Example 2.2

2.2 Artificial Variable and Big-MMethod

In the standard form of an LPP, when the decision variables together with slack and

surplus variables cannot afford initial basic variables, a non-negative variable is in-

troduced to the LHS of each equation which lacks the starting basic variable. This

variable is known as artificial variable.

BigMmethod is amethod of solving LPP having artificial variables. In this method,

a very large negative price (−M) (M is positive) is assigned to each artificial variable

in the objective function of maximization type. After introducing the artificial vari-

able(s), the problem can be solved in the usual simplex method. However, while solv-

ing in simplex, the following conclusions are drawn from the final table:

(a) The current solution is an optimal BFS, if no artificial variable remains in the basis

and the optimality condition is satisfied.

(b) The current solution is an optimal degenerate BFS, if at least one artificial variable

appears in the basis at zero level and the optimality condition is satisfied.

(c) The problem has no feasible solution, if at least one artificial variable appears in

the basis at positive level and the optimality condition is satisfied.



Example 2.3: Solve the following LP problem by simplex method:

Minimize Z = 2x1 +3x2

subject to

x1 + x2 ≥ 5

x1 +2x2 ≥ 6

x1,x2 ≥ 0

Solution: Introducing surplus and artificial variables, the given problem can be writ-

ten in standard form as

Max Z ′ =Mini (−Z) = −2x1 − 3x2 +0x3 +0x4 −Mx5 −Mx6

subject to

x1 + x2 − x3 + x5 = 5

x1 +2x2 − x4 + x6 = 6

x1,x2,x3, · · · ,x6 ≥ 0

cj → -2 -3 0 0 -M -M Mini

cB B xB b a1 a2 a3 a4 a5 a6 Ratio

-M a5 x5 5 1 1 -1 0 1 0 5/1=5

-M a6 x6 6 1 2 0 -1 0 1 6/2=2

zj − cj -2M+2 -3M +3 M M 0 0

-M a5 x5 2 1/2 0 -1 1/2 1 × 2/(1/2)=4

-3 a2 x2 3 1/2 1 0 -1/2 0 × 3/(1/2)=6

zj − cj (-M+1)/2 0 M (-M+3)/2 0 ×

-2 a1 x1 4 1 0 -2 1 × ×
-3 a2 x2 1 0 1 1 -1 × ×

zj − cj 0 0 1 1 × ×

Table 2.3: Simplex Table for Example 2.3

From the last iteration in Table 2.3, we see that zj−cj ≥ 0 for all j. Hence the optimality

condition is satisfied. The optimal basic feasible solution is x1 = 4 and x2 = 1 and the

corresponding Z ′max = −11, i.e. Zmin = 11.


