

	Principal Investigator		Co- Principal Investigator and Technical Coordinator
	Prof A.K.Bakhshi Sir Shankar Lal Professor, Department of Chemistry University of Delhi		Dr Vimal Rarh Deputy Director, Centre for e-Learning and Assistant Professor, Department of Chemistry, SGTB Khalsa College, University of Delhi Specialised in : e-Learning and Educational Technologies
1	Paper Coordinator	Content Writer	Reviewer
	Prof. R.K. Sharma Department of Chemistry University of Delhi	Prof. B.S. Garg Professor emeritus Department of Chemistry, University of Delhi	Prof A.K.Bakhshi Sir Shankar Lal Professor, Department of Chemistry University of Delhi
	Anchor In	stitute : SGTB Khalsa College	e, University of Delhi

Weblinks

chemwiki.ucdavis.edu/Organic_Chemistry/.../Optical_Activity

chemed.chem.purdue.edu/genchem/topicreview/bp/.../chirality.html

metabolomics.se/Courses/CEW_Isomer%20lecture_Part%20II.pdf

www.chemexplore.net/symmetry.htm

CHEMISTRY

PAPER No.: 13 Applications of group theory MODULE No. : 12 Symmetry and optical activity and dipole moment

science.marshall.edu/castella/chm448/chap3.pdf faculty.concordia.ca/muchall/chem325/LC-History.pdf chemwiki.ucdavis.edu/Physical_Chemistry/.../**Dipole_Moments** <u>https://www.boundless.com/chemistry/...of.../dipolemoment</u> _www.reciprocalnet.org/edumodules/**symmetry**/pointgroups/use.html

Suggested Readings

CHEMISTRY	PAPER No.: 13 Applications of group theory
	MODULE No. : 12 Symmetry and optical activity and dipole moment

D S Schonland. Molecular symmetry. Van Nostrand Co. Inc. Princeton. N.J1965,

H Jaffe, M Orchin. Symmetry in chemistry. John wiley and sons. New York, 1965

S F A Kettle. Symmetry and structure. Wiley, 1985

A Gateway to All Post Graduate Courses

CHEMISTRY	PAPER No.: 13 Applications of group theory
	MODULE No. : 12 Symmetry and optical activity and dipole moment

Glossary

A

Alternate axis of symmetry: Combination two operations mirror plane and proper axis of rotation

Asymmetrical molecules- Lacks all the elements of symmetry (i.e., plane of symmetry, centre of symmetry and axis of symmetry) and are not superimposable on their mirror images.

Axis of symmetry- Represents the line around which the molecule has identical atoms at equal distances from this line.

С

Conformations-Are the different 3-D orientations achieved by the molecule formed due to rotation about sigma bonds. These are freely inter-convertible into each other.

Configurations- Arise due to certain types of rigidity with in the molecule. They can get converted into another only if some bonds are broken and then re-established after rearrangement. They cannot be inter-converted into each other freely.

Chirality: Deals with the property of a molecule to rotate the plane polarised light

Centre of inversion: Imaginary point that lies in the body of the object in such a manner that each and every point on the object can be reflected through this point.

Combination of operation: One symmetry operation performed after another symmetry operation successively without disturbing the order of performing the symmetry operations.

D

Dextro rotatory -If the substance rotates plane polarised light to the right (clock wise), it is called dextro or the *d*-form and it is indicated by placing a (+) sign

Dissymmetric molecules: All molecules which lack S_n axis of any order will be dissymmetric and optically active

Dipole moment: Dipole moment (DPM) is vector property .It has both magnitude and direction and it results from unequal sharing of electrons between atoms of a bond in molecule.

Е

Eclipsed conformation- The C-H bonds on the front and back carbons are aligned with each other with dihedral angles as 0° .

Enantiomers- Pair of stereoisomers, which are non-super imposable on their mirror image and possess identical physical and chemical properties but differ in the direction (sign) of rotation of the plane polarized light.

I

CHEMISTRY	PAPER No.: 13 Applications of group theory
	MODULE No. : 12 Symmetry and optical activity and dipole moment

58⁵

Improper axis. It is a combination of Cn axis and reflection through a plane perpendicular to C_n axis

Inversion centre: Imaginary point that lies in the body of the object in such a manner that each and every point on the object can be reflected through this point.

L

Levorotatory: If the substance rotates plane polarised light to theeft (anticlock wise), it is called levo or the l-form and it is indicated by placing a (-) sign

0

Optical activity: Property of a molecule to rotate the plane polarised light

Р

Point group: Collection of symmetry operations which form the group R

Reflection plane: Imaginary mirror plane passing through the object in such a manner that it divides Graduate the object in two equivalent halves

S

Symmetry element: It is an imaginary geometric entity 'a point' or 'a line' or' a plane' about which symmetric movements (symmetry operations) can be performed.

Symmetry operation: It is a physical movement (rotations etc.) of the body of the object around an imaginary point or a line or a plane in such a manner that after the movement the final configuration of the object is indistinguishable from the original configuration of the object.

Symmetrical: Molecule which has symmetry around a line ,a point or a plane.

Superimposability: Putting the molecule over its mirror image

Superimposable. Molecule and its mirror image can be super imposed on each other

Time-Lines

Source:faculty.concordia.ca/muchall/chem325/LC-History.pdf

CHEMISTRY

PAPER No.: 13 Applications of group theory **MODULE No. :** 12 Symmetry and optical activity and dipole moment

Timelines	Image	Description
1669 →		The Danish professor of mathematics and medicine, Erasmus Bartholinus, observed that Iceland spar (calcite, calcium carbonate) exhibits double refraction - images viewed through crystals are doubled.
1677 → The Dutch mathematician/a stronomer/physic ist, Huggens, noted that each ray emerging from Iceland spar was polarized.		unpolarized ight The refractive indices of the clacite crystal are 1.6584 (ordinary ray) and 1.4864 (extraordinary ray).
1815		Jean Baptiste Biot notes certain natural organic compounds (liquids or solutions) rotate plane polarized light.
1853		Pasteur investigates meso-tartaric acid (another isomer of racemic and tartaric acid) but fails to separate it into (+) and (-) forms.

CHEMISTRY	PAPER No.: 13 Applications of group theory	
	MODULE No.: 12 Symmetry and optical activity and dipole moment	

1854	Pasteur notes a certain plant mold metabolizes (+) - tartaric acid but not (-) -tartaric acid.

Did You Know?

Source: http://en.wikipedia.org/wiki/Human_nutrition

	<u>Millinnin_Indeficient</u>
	32.
Description	Image
Most of the naturally occurring	
carbohydrates have D	
configuration while most of the	
naturally occurring amino acids	
have L configuration	, GV
	0051
	190
LOW ST	<u> </u>
Care	
A	
P. a	

CHEMISTRY	PAPER No.: 13 Applications of group theory
	MODULE No.: 12 Symmetry and optical activity and dipole moment