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1.  Learning Outcomes   

After studying this module, you shall be able to 

 Find the π-electron energy and wavefunction for cyclopropenyl radical 

 Understand the basis of molecular orbital diagram for π-electron systems 

2. Hückel Molecular orbital theory 

HMO theory is an approximate method which simplifies variation method to treat planar 

conjugated hydrocarbons. The Hückel theory treats only π- electrons in a planar 

conjugated molecule. HMO calculations are carried out using variation method and 

LCAO(π)-MO approximation. The basis set for MO approximation consists of one pπ-

orbital on each atom. The σ skeleton of the conjugated molecule is assumed frozen.  

 

According to LCAO-MO approximation, the MO is written as,   

 

 

 

And the approximate energy is given by, 

 

The Hamiltonian Ĥ incorporates the effect of the interaction of π electron with the rest of 

the molecule (nuclei, inner electrons, σ bonds) in an average way. In HMO method, π 

electrons are assumed to be moving in a potential generated by the nuclei and σ electrons 

-(1) 

-(2) 
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of the molecule. In addition, electron-electron repulsions are neglected in π-Hamiltonian 

of conjugated molecule. 

 

 

For a planar conjugated hydrocarbon, the only atomic orbitals of π symmetry are the 2pπ 

orbtials on carbon.In this module, we have consistently assumed the plane of the 

molecule as x-y plane with π orbital in the z axis, perpendicular to the molecular plane. 

 
A trial function that depends linearly on the variational parameters leads to a secular determinant 

which gives secular equation as an approximation to the energy.  
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To solve the Secular determinant for an n-π electron system, Hückel treated the Hii ,Hij, 

Sij and Sij integrals as parameters that can be evaluated empirically by fitting the theory to 

experimental results. 

1. 𝐻𝑖𝑗 = ∫ 𝜓𝑖
∗�̂�𝜓𝑗𝑑𝜏 

 

 
 

 

2. 𝑆𝑖𝑗 = ∫ 𝜓𝑖
∗𝜓𝑗𝑑𝜏 

 

 

-(3) 
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The expansion of an n x n Hückel determinant yields a polynomial equation which has n 

real roots giving n energy levels and n molecular orbitalsfor the n-π electron system. The 

energy of any ath molecular orbital (MO) is given by  

 

 aa xE   , where xa  is the ath root of the polynomial.  

3. Application of HMO theory 

In this section, we shall apply HMO theory to a cyclic conjugated molecule viz., 

cyclopropenyl radical. 

 

 

3.1 Cyclopropenyl radical 

 
We consider here the case of cyclopropenyl radical. 

 

Cyclopropenyl radical is a 3 π-electron cyclic system where the carbon atoms are 

adjacent with each carbon 2pz orbital contributing 1 electron to the HMO π-electron 

system. 

 

The three atomic orbitals (AOs) combine to form molecular orbitals (MOs).  

 

Labeling the three carbons as 1, 2 and 3,  

 

-(4) 
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The Hückel molecular orbital wavefunction for this system becomes 

𝜑𝑎 = 𝑐1𝜓2𝑝𝑧1
+ 𝑐2𝜓2𝑝𝑧2

+ 𝑐3𝜓2𝑝𝑧3
 

The Secular equations obtained for cyclopropenyl radical are of the form: 

 

(H11 − ES11)𝑐1 + (H12 − ES12)𝑐2 + (H13 − ES13)𝑐3 = 0 

(H21 − ES21)𝑐1 + (H22 − ES22)𝑐2 + (H23 − ES23)𝑐3 = 0 

(H31 − ES31)𝑐1 + (H32 − ES32)𝑐2 + (H33 − ES33)𝑐3 = 0 

which can be written in the form of secular determinant of order three as shown below,  

[

𝐻11 − 𝐸𝑆11 𝐻12 − 𝐸𝑆12 𝐻13 − 𝐸𝑆13

𝐻21 − 𝐸𝑆21 𝐻22 − 𝐸𝑆22 𝐻23 − 𝐸𝑆23

𝐻31 − 𝐸𝑆31 𝐻32 − 𝐸𝑆32 𝐻33 − 𝐸𝑆33

] [

𝑐1

𝑐2

𝑐3

] = 0 

 

Now, in the case of cyclopropenyl radical, carbon atom 1 is connected to carbon atom 3, 

i.e., the C1 and C3 are neighbors.  

 

Taking into account the assumptions of HMO theory, the secular determinant transforms 

into Hückel determinant as,  

𝐻11 = 𝐻22 = 𝐻33 = 𝛼𝐻12 = 𝐻21 = 𝐻13 = 𝐻31 = 𝐻23 = 𝐻32 = 𝛽 

𝑆11 = 𝑆22 = 𝑆33 = 1𝑆12 = 𝑆21 = 𝑆13 = 𝑆31 = 𝑆23 = 𝑆32 = 0 

 

 

 

[

𝛼 − 𝐸 𝛽 𝛽
𝛽 𝛼 − 𝐸 𝛽
𝛽 𝛽 𝛼 − 𝐸

] [

𝑐1

𝑐2

𝑐3

] = 0 

 

-(5) 



  
____________________________________________________________________________________________________ 

CHEMISTRY 
 

PAPER: 2, PHYSICAL CHEMISTRY-I 

MODULE: 33 ,Hückel Molecular orbital Theory – 
Application PART III 

 

[

𝑐1

𝑐2

𝑐3

] ≠ 0 ⇒ [

𝛼 − 𝐸 𝛽 𝛽
𝛽 𝛼 − 𝐸 𝛽
𝛽 𝛽 𝛼 − 𝐸

] = 0 

 

|

𝛼 − 𝐸 𝛽 𝛽
𝛽 𝛼 − 𝐸 𝛽
𝛽 𝛽 𝛼 − 𝐸

| = 0 

 

Let, 𝜆 =
𝛼−𝐸

𝛽
 

 

This reduces the Hückel determinant as,  

|
𝜆 1 1
1 𝜆 1
1 1 𝜆

| = 0 

 

 

 

 

 

The Hückel determinant leads to a polynomial equation, 

𝜆3 + 3𝜆 + 2 = 0 

which gives,  

(𝜆 + 2)(𝜆2 − 2𝜆 + 1) = 0 

 

(𝜆 + 2)(𝜆2 − 𝜆 − 𝜆 + 1) = 0 

 

(𝜆 + 2)(𝜆 − 1)(𝜆 − 1) = 0 

 

-(6) 

-(7) 

-(9) 

Note: For all cyclic π molecules, the element 1 will appear in Hückel determinant at 

positions 1 X n as well as n X 1, because the position 1 and position n are neighbors. 

-(8) 
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Thus, we have three roots of the polynomial equation as: 

 

𝜆1 = −2; 𝜆2 = 1; 𝜆3 = 1 

 

We assumed earlier while simplifying the Hückel determinant that 

𝜆 =
𝛼 − 𝐸

𝛽
 

So, the energies of the molecular orbitals of cyclopropenyl radical  are of the form, 

 

𝜆1 = −2          𝐸1 = 𝛼 + 2𝛽 

 

𝜆2 = 𝜆3 = 1          𝐸2 = 𝐸3 = 𝛼 − 𝛽 

The two energy levels viz., E2 and E3 are degenerate. 

The Hückel energy level diagram for cyclopropenyl radical is shown below: 

 

 
 
HMO energy level diagram for cyclopropenyl radical 

 

The total π electron energy Eπ is taken as the sum of the energies corresponding to 

occupancy of each π electron.  

-(12) 

-(10) 

-(11) 
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For cyclopropenyl radical, the total π electron energy Eπ is given by 

𝑇𝑜𝑡𝑎𝑙 𝜋 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐸𝜋) = 2(𝛼 + 2𝛽) + (𝛼 − 𝛽) 

 

𝐸𝜋 = 3𝛼 + 3𝛽 

 

Resonance energy (or delocalization energy D.E.) is defined as the difference in the 

energy of π electrons in a given molecule and the sum of energies of isolated double bond 

 

The energy of two π electrons in ethylene is  

𝐸𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒 = 2𝛼 + 2𝛽 

 

𝐸𝐷.𝐸. =  𝐸𝜋 − 𝐸𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒 = 3𝛼 + 3𝛽 − 2𝛼 − 2𝛽 − 𝛼 = 𝛽 

 

Hence, we can say that the cyclopropenyl radical is stable by a factor β in comparison to 

an isolated double bond. 

 

Another related term is π bond formation energy which is the energy released when a π 

bond is formed. Since the contribution of α is same in the molecules as in the atoms, so 

we can consider the energy of three  electrons, each one in isolated and non-interacting 

atomic orbitals as 3α, then the π bond formation energy becomes, 

𝐸𝜋(𝑏𝑜𝑛𝑑 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) = 𝐸𝜋 − 𝐸𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 

𝐸𝜋(𝑏𝑜𝑛𝑑 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) = 3𝛼 + 3𝛽 − 3𝛼 = 3𝛽 

 

Now, we solve for HMO coefficients,  

 

In terms of λ given by 

𝜆 =
𝛼 − 𝐸

𝛽
 

the secular equations for cyclopropenyl radical  are as follows,  

-(13) 

-(14) 
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[
𝜆 1 1
1 𝜆 1
1 1 𝜆

] [

𝑐1

𝑐2

𝑐3

] = 0 

 

 

𝜆𝑐1 + 𝑐2 + 𝑐3 = 0 
 

𝑐1 + 𝜆𝑐2 + 𝑐3 = 0 
 

𝑐1 + 𝑐2 + 𝜆𝑐3 = 0 
 

 

𝐹𝑜𝑟, 𝜆 = −2, the secular equations become, 

 

−2𝑐1 + 𝑐2 + 𝑐3 = 0 
 

𝑐1 − 2𝑐2 + 𝑐3 = 0 
 

𝑐1 + 𝑐2 − 2𝑐3 = 0 
 

Subtracting equation (18) from equation (17) respectively gives,  

 

−3𝑐1 − 3𝑐2 = 0 
 

𝑐1 = 𝑐2 
 

Subtracting equation (19) from equation (18) respectively gives, 

 

−3𝑐2 − 3𝑐3 = 0 
 

𝑐2 = 𝑐3 
 

 

Now, we know that the sum of squares of coefficients is always unity, i.e., from 

normalization condition,  

 

𝑐1
2 + 𝑐2

2 + 𝑐3
2 = 1 

 

-(15) 

-(17) 

-(16) 

-(21) 

(18) 

-(19) 

-(20) 

-(22) 
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Now, using equations (20) and (21), we get normalization condition for 𝜆 = −2 as, 

 

3𝑐1
2 = 1    𝑜𝑟  𝑐1 = 𝑐2 = 𝑐3 = 1

√3
⁄  

 

 

So, we get the wavefunction corresponding to 𝜆 = −2  as,  

 

𝜑1 =
1

√3
(𝜓2𝑝𝑧1

+ 𝜓2𝑝𝑧2
+ 𝜓2𝑝𝑧3

) 

 

𝐹𝑜𝑟, 𝜆 = 1, the secular equations become, 

 

𝑐1 + 𝑐2 + 𝑐3 = 0 
 

𝑐1 + 𝑐2 + 𝑐3 = 0 
 

𝑐1 + 𝑐2 + 𝑐3 = 0 
 

The value of the coefficients corresponding to 𝜆 = 1 cannot be determined using the set 

of equations as given in expression (25) alone. We know that the energy levels 

corresponding to 𝜆 = 1 (𝐸2 𝑎𝑛𝑑 𝐸3) are degenerate. And in case of degenerate orbitals, 

HMO method cannot determine the coefficients uniquely. One can choose any value for 

c1, c2 and c3 provided that they satisfy the conditions of normalization and orthogonality 

as well as the values of c1, c2 and c3 must satisfy the expression (25).  

A simple method to satisfy the above mentioned three conditions is to set any one of the 

coefficients equal to zero. Let 𝑐3 = 0, then we have from equation (25),  

𝑐1 + 𝑐2 = 0 
 

𝑐2 = −𝑐1 
 

From normalization condition,  

 

𝑐1
2 + 𝑐2

2 + 𝑐3
2 = 1 

-(23) 

-(24) 

-(26) 

-(25) 
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𝑐1

2 + 𝑐2
2 + 0 = 1 

 

Using equation (26) in equation (27) gives,  

 

𝑐1
2 + 𝑐1

2 + 0 = 1 
 

2𝑐1
2 = 1   𝑜𝑟  𝑐1 = 1

√2
⁄  , 𝑐2 = − 1

√2
⁄  

 

So, we get the wavefunction corresponding to 𝜆 = 1 assuming 𝑐3 = 0 as,  

 

𝜑2 =
1

√2
(𝜓2𝑝𝑧1

− 𝜓2𝑝𝑧2
) 

 

We arbitrarily chose 𝑐3 = 0 but we cannot repeat the same process for determining φ3. 

This is because φ3 must be orthogonal to φ1 and φ2.  

∫ 𝜑1𝜑3𝑑𝜏 = 0 

 

∫ 𝜑2𝜑3𝑑𝜏 = 0 

 

 

For instance, taking equation (31), we get 

 

∫ [1
√2

⁄ (𝜓2𝑝𝑧1
− 𝜓2𝑝𝑧2

)] [𝑐1𝜓2𝑝𝑧1
+ 𝑐2𝜓2𝑝𝑧2

+ 𝑐3𝜓2𝑝𝑧3
]𝑑𝜏 = 0 

 

 

On expanding the equation (32) we get, 

 

∫ 1
√2

⁄ 𝑐1𝜓2𝑝𝑧1

2𝑑𝜏 + ∫ 1
√2

⁄ 𝑐2 𝜓2𝑝𝑧1
𝜓2𝑝𝑧2

𝑑𝜏  + ∫ 1
√2

⁄ 𝑐3 𝜓2𝑝𝑧1
𝜓2𝑝𝑧3

𝑑𝜏

− ∫ 1
√2

⁄ 𝑐1𝜓2𝑝𝑧2
𝜓2𝑝𝑧1

𝑑𝜏 − ∫ 1
√2

⁄ 𝑐2𝜓2𝑝𝑧2

2𝑑𝜏

− ∫ 1
√2

⁄ 𝑐3 𝜓2𝑝𝑧2
𝜓2𝑝𝑧3

𝑑𝜏 = 0 

 

-(31) 

-(30) 

(27) 

-(28) 

-(29) 

-(32) 
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∫ 1
√2

⁄ 𝑐1𝜓2𝑝𝑧1

2𝑑𝜏 − ∫ 1
√2

⁄ 𝑐2𝜓2𝑝𝑧2

2𝑑𝜏 = 0 

 
1

√2
⁄ 𝑐1 − 1

√2
⁄ 𝑐2 = 0 

 

Or, we can write 𝑐1 =  𝑐2 

 

But, the value of coefficients must satisfy equation (25), 

 

𝑐1 + 𝑐2 + 𝑐3 = 0 
 

2𝑐1 + 𝑐3 = 0 
 

𝑐3 = −2𝑐1 
 

From normalization condition,  

 

𝑐1
2 + 𝑐2

2 + 𝑐3
2 = 1 

 

Substituting the values from equations (33) and (34) we get,  

 

𝑐1
2 + 𝑐1

2 + 4𝑐1
2 = 1 

 

6𝑐1
2 = 1         𝑜𝑟  𝑐1 = 𝑐2 = 1

√6
⁄ ; 𝑐3 = − 2

√6
⁄  

 

 

So, we get the wavefunction φ3 as, 

 

𝜑3 =
1

√6
𝜓2𝑝𝑧1

+
1

√6
𝜓2𝑝𝑧2

−
2

√6
𝜓2𝑝𝑧3

 

 

In general, any linear combinations of degenerate molecular orbitals (MO’s), which 

satisfy the orthogonality and normalization conditions, will be equally valid MO’s.  

The pictorial representation of the three Hückel molecular orbitals for cyclopropenyl 

radical is shown below. 

-(33) 

-(34) 

-(35) 

-(36) 
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 Electron density: 

 

∫ 𝜑2𝑑𝜏 = ∑ 𝑐𝑛
2 =

𝑛

𝑐1
2 + 𝑐2

2 + 𝑐3
2 

 

This means that in LCAO-HMO approach, 𝑐𝑛
2 represents the electron density due to one 

electron at the atom n, but there may be several electrons in the system distributed in a 

number of HMO’s. So, the total electron density is taken as the sum of electron densities 

contributed by different electron in each HMO. 

𝑞𝑛 = ∑ 𝑛𝑖𝑐𝑖𝑛
2 𝑛𝑖𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑖𝑛 𝑖𝑡ℎ 𝐻𝑀𝑂 (0,1 𝑜𝑟 2)

𝑖

 

 



  
____________________________________________________________________________________________________ 

CHEMISTRY 
 

PAPER: 2, PHYSICAL CHEMISTRY-I 

MODULE: 33 ,Hückel Molecular orbital Theory – 
Application PART III 

 

In case of cyclopropenyl radical, two π-electrons are in energy state E1 while the third 

electron may be placed in either energy state E2 or E3 (degenerate). In such a case, 

electron density is calculated by assuming that half of the available electron is in each of 

the degenerate MO’s.  

 

𝑞1 = 2 × (1
√3

⁄ )
2

+ 1
2⁄ × (1

√2
⁄ )

2

+ 1
2⁄ × (1

√6
⁄ )

2

= 1 

 

𝑞2 = 2 × (1
√3

⁄ )
2

+ 1
2⁄ × (− 1

√2
⁄ )

2

+ 1
2⁄ × (1

√6
⁄ )

2

= 1 

 

𝑞3 = 2 × (1
√3

⁄ )
2

+ 0 + 1
2⁄ × (− 2

√6
⁄ )

2

= 1 

 

 Charge density 

In a conjugated molecule, a neutral carbon is associated with an electron density of 

1.0 and the net charge density is defined as 

𝜀𝑛 = 1 − 𝑞𝑛 

For cyclopropenyl radical,  

𝜀1 = 1 − 1 = 0 = 𝜀2 = 𝜀3 

 Π-bond order between adjacent carbon atoms is given by 

𝐵𝑂𝑎𝑏
𝜋 = ∑ 𝑛𝑖𝑐𝑖𝑎𝑐𝑖𝑏

𝑖

 

𝑤ℎ𝑒𝑟𝑒 𝑛𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝜋 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑖𝑛 𝑖𝑡ℎ 𝑀𝑂
𝑐𝑖𝑎𝑐𝑖𝑏 𝑖𝑠 𝑡ℎ𝑒 𝜋 − 𝑒𝑙𝑒𝑐𝑡𝑜𝑟𝑛 𝑐ℎ𝑎𝑟𝑔𝑒 𝑖𝑛 𝑖𝑡ℎ 𝑀𝑂 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 

𝑐𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚𝑠 𝑎 𝑎𝑛𝑑 𝑏

 

 

Π-bond order represents the extent of π-bonding between adjacent atoms. 

For cyclopropenyl radical, 
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𝐵𝑂12
𝜋 = (2 × 1

√3
⁄ × 1

√3
⁄ ) + (1

2⁄ × 1
√2

⁄ × − 1
√2

⁄ ) + (1
2⁄ × 1

√6
⁄ × 1

√6
⁄ ) 

𝐵𝑂12
𝜋 = 0.5 

 

𝐵𝑂23
𝜋 = (2 × 1

√3
⁄ × 1

√3
⁄ ) + (1

2⁄ × − 1
√2

⁄ × 0) + (1
2⁄ × 1

√6
⁄ × − 2

√6
⁄ ) 

𝐵𝑂23
𝜋 = 0.5 

 

𝐵𝑂31
𝜋 = (2 × 1

√3
⁄ × 1

√3
⁄ ) + (1

2⁄ × 0 × 1
√2

⁄ ) + (1
2⁄ × − 2

√6
⁄ × 1

√6
⁄ ) 

𝐵𝑂31
𝜋 = 0.5 

 

 

There is a σ bond between two carbon atoms which is taken into account while reporting 

the total bond order. The total bond order is given by 

 

𝐵𝑂𝑎𝑏
𝑡𝑜𝑡𝑎𝑙 = 1 + 𝐵𝑂𝑎𝑏

𝜋  

 

 

 

A high bond order corresponds to large π-charge in the bond regions which means a 

shorter and stronger bond. 

 

 

 

 

 

  

Exercise: Calculate the ground state energies, wavefunction, electron density, charge 

density and bond order for cyclopropenyl carbonium ion and carbanion respectively. 

Compare the results with cyclopropenyl radical and comment on the results. 
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4. Summary  

 HMO theory is an approximate method which simplifies variation method to treat 

planar conjugated hydrocarbons. 

 The Hückel theory treats only π- electrons in a planar conjugated molecule.  

 HMO calculations are carried out using variation method and LCAO(π)-MO 

approximation. 

 The basis set for MO approximation consists of one pπ-orbital on each atom. 

 Application of HMO theory to cyclopropenyl radical 

 Cyclopropenyl radicalis a three electron system 

 𝐸1 = 𝛼 + 2𝛽𝐸2 = 𝐸3 = 𝛼 − 𝛽 

The two energy levels viz., E2 and E3 are degenerate. 

 𝐸𝜋 = 3𝛼 + 3𝛽 

 𝐸𝐷.𝐸. =  𝛽 

 In case of degenerate orbitals, HMO method cannot determine the coefficients 

uniquely. One can choose any value for c1, c2 and c3 provided that they satisfy the 

conditions of normalization and orthogonality. In general, any linear combinations of 

degenerate molecular orbitals (MO’s), which satisfy the orthogonality and 

normalization conditions, will be equally valid MO’s. 

 𝜑1 =
1

√3
(𝜓2𝑝𝑧1

+ 𝜓2𝑝𝑧2
+ 𝜓2𝑝𝑧3

) 

𝜑2 =
1

√2
(𝜓2𝑝𝑧1

− 𝜓2𝑝𝑧2
) 

𝜑3 =
1

√6
𝜓2𝑝𝑧1

+
1

√6
𝜓2𝑝𝑧2

−
2

√6
𝜓2𝑝𝑧3
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