

Subject : Information Technology
Paper : Object Oriented Concepts & Programming
Module : Runtime polymorphism by virtual functions

Introduction
Polymorphism is considered to be one of the biggest advantages of using an object oriented

programming. It is the property of the same object to behave differently in a different

context when supplied with the same message. There are two ways in which this can be

done. Compile time polymorphism which takes place at compile time

and Runtime polymorphism which happens at runtime. The operator

overloading and function overloading are examples of compile time

polymorphism. When we encounter statements shown in 24.1, we

can see that the same message (+) is interpreted differently. Look at

these definitions of three different types of data and their respective

operations. The + operations which we see indicates the same

message given to three different pairs of objects of different types;

int-int, char-char, department-employee as shown in 24.2.

When the functions are overloaded, the same function acts differently

when a different set of arguments are passed to them. For example, the

same operation can be executed using an overloaded function called

Sum. When the function Sum is called with int types an int addition is performed, when

complex arguments are provided, real and imaginary parts are added and when an employee

is added to the department, he becomes part of the department, by

having two different arguments in Sum. In all of above cases, the object

behaves differently, i.e. calls a different function or invokes different

operator, given the same message (Sum or +), depending on the context

(the arguments that we pass), thus it confirms to be a polymorphism.

Both of these operations happen at compile time and thus this is called

compile time polymorphism.

The C++ language extends this functionality to runtime.

It is possible to define, for example, classes in some

hierarchy and have virtual functions defined. We can

have a pointer pointing to a base class object but can

call a function defined for any derived class object and

decide that at run time. For example, consider we

have classes shown in Fig 24.4.

Int i, j;

char c1, c2;

department d1;

employee e1, e2;

i + j

c1 +c2

d1 + e2

Sum (I,j)

Sum(c1,c2);

Sum (d1,e2);

class Shape…

class Rectangle: public Shape

class Square:: public Rectangle

class circle:: public Shape

 Figure 23.4 class hierarchy

Figure 23.1 variables to
overload

Figure 23.3 operator
overloading

Figure 23.2 function
overloading

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 2 Object Oriented Concepts & Programming

Once we have this hierarchy, we can have code defined as depicted in figure 24.5.

We know that it is possible to use a base class pointer to point

to a derived class object and thus can call the functions of the

class pointed to by that pointer. However, C++ does not

provide that facility by default. In above case, if draw() is

defined in all classes as a normal function, in both of above

cases, the function of the Shape class is only called. If we

explicitly want the function to be decided at runtime based on

what the pointer is pointing to, we must define that function

as a virtual function.

Calling functions differently
A virtual function can be called in two different ways, using the Object.Function () notation as well

as (pointer to object) -> function () notation1. The object dot member function method invokes the

member virtual function in a static form, resolved at compile time. That means the function is

replaced at compile time with the subobject jump instruction where the function is loaded at

runtime. If the function is inline the code is copied at the place at compile time. Unlike that,

the pointer to object invokes the virtual function at runtime. The process of replacing the call

with either the jump to the function code or pasting of the code itself (which is known as

resolution) happens at run time. That slows down the execution of the program and thus not

chosen as a default behavior of a C++ function. If a programmer wants to make sure that the

function call is resolved at runtime, he will have to define a pointer to an object and define

that function as virtual. Only, in that case, the function call will be resolved at runtime. As

mentioned in the footnote-1, instead of a pointer to an object, one can pick up a reference of

an object and use Reference.Function() method to invoke the function at runtime.

When a member function is called using Object.Function notation, an interesting transformation

takes place. The member function call is replaced by the following code, having an additional

argument; as a pointer to the invoking object.

Thus Object.Function() is replaced by Function (class * object);

For example, in the case of the Emp class that we have seen in the 16th module, we can

write following code, assuming a function Display() is defined for displaying details of the

employee object.

Emp tEmp;

1 Unless explicitly stated, a pointer to object means either pointer to object or reference of an object in the

discussion that follows.

Shape *pShape;

pShape = new (Circle)

pShape->draw();

pShape = new (Square)

pShape->draw();

Figure 24.5 calling draw()

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 3 Object Oriented Concepts & Programming

tEmp.Display()

//above statement is internally converted to
Display(Emp * tEmp)2

The Display() has no parameters originally but have one parameter now. If this function has

one or more than one parameters, this additional parameter is added in front of all of them.

This special parameter, which is basically a pointer to the invoking object, is known as this

pointer and a programmer can access that using a keyword this.

When can a programmer need to use this pointer? Here is one such example depicted in the

program 24.1 block-1. Here is a

program which decides who is elder,

whether an invoking object or the

object which is passed as an argument.

The idea is to make sure the function

returns the elder person out of the two,

either the invoking object or the object

which is passed. The return of invoking

object is the area of our interest. That

object is referred as *this and following

code decides what the function returns.

Hero Elder (Hero t_Hero)
 {
 if (Age > t_Hero.Age)
 return *this;
 else return t_Hero;
 }

the rest of the code does not demand

much explanation. We have overloaded

<< operator to display the information

about the Hero. As this operator can

only be overloaded as a friend as we want the

object to be displayed to be passed as the

second (and not the first) argument, we have

done so. There are two elements of the Hero

class, one describes the name and other the age.

The main() function is equally straight forward. It

just calls this member function Elder. The object

returned is displayed next using cout.

2
 Modules 34,35 and 36 throws some light on the C++ object model, which describes many things including

why such a transformation takes place.

// Program 23.1 Block 1
//ThisPointer.cpp
#include <iostream>
#include <string>
using namespace std;

class Hero
{
 string nm;
 int Age;
public:
 Hero (string t_nm, int t_Age)
 {
 nm = t_nm;
 Age = t_Age;
 }
 Hero Elder (Hero t_Hero)
 {
 if (Age > t_Hero.Age)
 return *this;
 else return t_Hero;
 }
 friend ostream & operator <<
 (ostream& t_Out, Hero & t_Hero);
};
ostream & operator <<
 (ostream & t_Out, Hero & t_Hero)
{
 t_Out << t_Hero.nm << " is ";
 t_Out << t_Hero.Age << " years old ";
 return t_Out;
}

// Program 24.1 Block-1
int main()
{
 Hero Bajrangi("Salman",50);
 Hero Raj("Sharukh",49);

 Hero BigB = Bajrangi.Elder (Raj);
 cout << BigB << " and elder of the two \n";
}

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 4 Object Oriented Concepts & Programming

Base and derived classes
Suppose we have the Shape, circle, rectangle and square classes defined as before. We can

define a pointer to a Shape class and make it point to any other class down the hierarchy. We

can also define a pointer to those derived classes. Let us try to understand the difference

between those pointers.

Shape *pShape;

Circle *pCircle, SomeCIrcle;

Following are allowed

pShape = new Circle;

pCIrcle = new Circle;

Following is not allowed

pCircle = new Shape;

But we can cast the pointer before allocation and then it is allowed.

pCircle = (Circle *) pShape;

What exactly is the reason for this behavior of a C++ compiler? Allowing a base class pointer

to point to derived class is allowed but not the other way round seems strange. Let us try to

understand the reason. When we derive a class from another class, the derived class object

contains the data members of both, base as well as a derived class in the fashion shown in

24.6. The data members of the derived class are kept immediately after the data members of

the base class members. The part of the derived class object which contains the base class

members is known as the base class subobject of the derived class. Whenever a pointer is

defined, the pointer’s access is confined to the type it is defined with. Both derived and base

class members can point to the derived class object but while the derived class pointer can

access every member of both, base class subobject as well as derived class object, the base

class pointer can only access the base class subobject. Thus when pCircle access the circle

object, it can access data members of Shape as well as data members of Circle, but pShape can

only access Shape subobject.

This point needs further explanation. Every pointer, when defined, also defines the scope.

The increment and decrement happen based on that definition. For example, if we have two

pointers defined as int and char pointers.

int *pInt; char *pChar;

Emp *pEmp;

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 5 Object Oriented Concepts & Programming

Here, ++pInt increments 64 bits(in a 64-bit compiler) to point to next int while ++pChar

increments 8 bits to point to next char. If an Emp object is of 100 bytes, ++pEmp jumps 100

bytes to point to next Emp object.

Similarly, a derived class pointer, when incremented, increments according to the size of

derived class while a base class pointer, when incremented, increments according to that

size. That means, though both types of pointers can point to a derived class object, they are

not same. Their scope and accordingly their process of increment, is different.

Figure 24.6 the inherited object layout

When Shape is inherited into Circle, it only contains one sub object of Shape class. Consider

another case of multiple-inheritance. A cricketer class, as well as Indian class, inherits into an

IndianCricketer class. If the object is defined as follows.

IndianCricketer Mithali;

The Mithali object contains two subobjects, Indian as well as Cricketer. In the case of a Square

object, which is inherited from Rectangle, which in turn is inherited from Shape, it contains

both subobjects. The compiler, when an object of one type is assigned to another, the

compiler has to manage the process in such a way that the assignment makes sense. Figure

24.7 indicates how inherited and further inherited classes are laid out and the scope of the

base class pointer in either case. In a case of multiple-inheritance, almost a similar structure

sub object.

Figure 24.7 a further derived class and a scope of a pointer to base class

Data members of Shape
Content of Shape object

Data members of Shape The content of Circle
object Data members of Circle

Square data members

Shape data member
Rectangle object

square Object

Rectangle data member

Shape data member

Rectangle data member

The pShape can
access this part

The pShape can access this part

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 6 Object Oriented Concepts & Programming

Derived class member function with the same name
What if a derived class member function has the same name that of the base class member

function? The derived class object has now two members with the same name, one that it

has inherited and another which it has defined itself. It can still access both of them using the

scope resolution operator. What if we do not specify the scope resolution operator? The

default function is the local function. Let us take an example to understand.

Closely observe the block 1 of program 24.2.

There is two functions draw(), in Circle, first

which is inherited from Shape and another that

it has defined inside its body, both with the same

name and thus are considered overloaded.

However, our interest is to see what exactly is

the output of the statements which invoke those

functions.

We have three such statements in our main()

described in the second block of the program

24.1. The output is shown at the end of that

block indicating what is the output of some of

the calls that we have made to draw() function

associated with different objects or pointers.

First is,

t_Shape.draw();

It calls the draw() function of the Shape class. Another is

following statement, which rightfully calls the Circle class

draw() function.

 Ring.draw();

When we have another set of statements, the behavior

seems strange. pShape points to a circle object but calls a

draw() function of the Shape class!

 pShape = &Ring;

 pShape->draw();

When a base class pointer is pointing to a derived class object, it executes the BASE class

function and not a derived class function.

//Program 23.2 block 1
//NonVirtaul
#include <iostream>
using namespace std;
class Shape
{
 int l_Style;
 int fill;
public:

 void draw()
 {
 cout << "It is Shape \n";
 }
};
class Circle:public Shape
{
 int R;
 int CenterX;
 int CenterY;
public:

 void draw()
 {
 cout << "It is Circle \n";
 }
};

//Program 24.1 block 2
int main()
{
 Shape t_Shape, *pShape;
 Circle Ring;
 t_Shape.draw();
 Ring.draw();

 pShape = &Ring;

 pShape->draw();
}
It is Shape
It is Circle
It is Shape
Program ended with exit code: 0

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 7 Object Oriented Concepts & Programming

A kind of local and global variable behavior is observed when we use an Object.Function

notation. When two variables of the same name are used, in both, local and global context,

the global variable is inferred when in a global context while in a local context, the local

variable is in effect. However, when a pointer is pointing to an object and a function is

invoked, there are two options for the compiler to act on.

1. The compiler decides the type of pointer by looking at the definition and choose the

function belongs to that class.

2. The compiler, alternatively, can find out where the pointer is pointing to, and choose

the function belongs to the object being pointed to at that point in time.

The C++ compiler, as you have seen in above case, chooses the first approach. The reason is,

when a function is already defined and used to invoke the overloaded function like draw ()

above, the compiler has this pointer for this call available and can process the function call at

compile time. When we define pShape is pointing to a Shape class, this pointer is this pShape

itself (which is of type pointer to Shape). Unlike that, the second case requires the compiler

to know where the pointer is pointing to which may not be possible at compile time. C++

compilers by default choose options which are runtime efficient and thus they choose the

first version. What if we want to tell the compiler to go for the second option, that means, we

want to the compiler to find out where the pointer is pointing to, and execute the function of

that object? We can do so very easily by changing a single statement in the above program.

The base class draw function definition now changes as follows.

The virtual word added just before the name of the function

changes the default behavior. Now the compiler resolves the

function based on the content the pointer is pointing to. The

output now changes to as shown in 24.8. The third statement

now indicates that it draws a circle. That means, the compiler

now finds out where the pShape is pointing to and invokes the

draw() function of that class.

Virtual functions
Virtual functions allow the process of choosing the function at runtime. Virtual functions are

treated specially by compilers. When the virtual functions are deployed in the class, the class

requires additional storage for two reasons. The first addition is called a virtual table. This

table is used for storing pointers to all virtual functions. This virtual table is also known as

vtble for short. Another additional storage requirement stems from the objects to need to

have an access to this virtual table. Every object now has a pointer inserted as an additional

member, known as vptr, pointing to that virtual table. Such a table is constructed for every

class where at least a single virtual function is defined. All objects of that class invariably will

have a single vptr as an additional member in all such cases. The idea is to reset this virtual

class Shape
{..
 virtual void draw()
 …
It is Shape
It is Circle
It is Circle

..

Figure 24.8 Changes by virtual

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 8 Object Oriented Concepts & Programming

pointer to point to the vtble when the pointer points to object of another class. This resetting

is done at runtime when pointers continue pointing to objects of different classes. When a

different type of object is pointed to by the pointer, it has its vptr pointing to different vtble

and thus can access to different virtual functions defined for those objects. Suppose

following three statements are encountered.

 Shape *pShape;
 pShape = &Ring;
 pShape->draw();

pShape is defined as pointer to shape in the first statement. When it is defined, it contains a

vptr pointing to vtble of Shape class. When statement 2 is encountered and pShape is made

to point to an object of class Circle, the pShape’s vptr now is made to point to vtble of Circle

class.

The virtual table is also created when the Run Time Type Information or RTTI is enabled, even

when there is no virtual function defined. This is because this information is also stored in the

same virtual table, usually as the first entry. Similarly, the information about virtual base

classes is also kept either in this virtual table or an additional similar table is constructed.

Point is, even when the virtual functions are not defined, there is a possibility of the virtual

table to exist.

Constraints on virtual functions
Whenever designers want to have some functionality using virtual functions, he must learn

about typical ways virtual functions can be defined and used.

1. The virtual functions, in the entire hierarchy, should bear the same prototype as the

base class virtual function has, including the name. If a programmer makes a mistake

of changing the prototype and keeping the same name, the function becomes a

normal overloaded function and not a virtual function.

2. The derived class version of the virtual function, having the exact prototype as of the

base class, may omit virtual keyword. It is considered by default.

3. A derived class can forgo defining a virtual function in their class, in that case, if ever

the virtual function is called by either the object or the pointer to that object, it calls

the base class virtual function. This is, as explained before, is like referring to the

global variable when the local variable is not defined.

4. It is compulsory to define a virtual function in the base class. One can though define a

virtual function with an empty body.

5. Defining a virtual function in a single class makes no sense. It is like defining a normal

function. For any real life solution, the hierarchy must be present. The other

requirement is technical; when a function is called, it must be called by the pointer to

the object of the class or the reference of the class object and not the object. Only

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 9 Object Oriented Concepts & Programming

when a virtual function is invoked by pointer or reference to the object, the

polymorphism is possible to be achieved. Though, one can invoke a virtual function in

a static fashion as well.

6. One cannot define a constructor as virtual. This is because when a derived class

constructor is called, it calls the base class constructor as well to construct the base

class subobject. Virtual functions of the derived class override the virtual functions of

the base class, having just virtual constructor which replaces a base class constructor

with a derived class won’t do.

7. Virtual destructors are allowed and it is a good idea to have a virtual destructor.

When a base class pointer points to a derived class object and executes a destructor,

it is better it executes the derived class destructor and deletes the entire derived class

object rather than the base class subobject.

The process of binding
The virtual functions are said to provide dynamic or late binding. Normal functions are

resolved at compile time. That means, when a compiler encounters a function call, it can

decide which is the exact function to be called, even when it is one of the overloaded

functions, and convert it into that specific call. Thus the function call is bound to the exact

function at compile time, known as static or early binding. Unlike that, when a virtual

function is called, the compiler cannot decide which function is to be called at that point in

time. The compiler converts that code to another code which runs and decides the function

to execute at that point in time. Thus the function call is bound to the exact function at

runtime.

The functions which are called from main () are looked at from the libraries used and linked

with the main in the second phase after compilation. This process is known as linking, and the

process which does so is called a linker. The trouble with the virtual function is that they are

not possible to be resolved at compile time and thus linker cannot link them at compile time.

That process is delayed till the runtime. That is why it is also called late binding.

Alternatives to virtual functions
There are a few possible alternatives to using virtual functions, sometimes. For example, one

can use pointers to function or pointers to member functions. Using them, a lot of flexibility

can be achieved without really needing the runtime overhead.

Another idea is to use a non-member non-virtual function which is independent of the class

to access the situation at runtime and decide what to do, instead of using a virtual function.

For example, if we have some treasures and health values associated with the video game

that we were discussing, it is intuitive for us to call a virtual function as follows.

pPlayer->getPoints()

 Module 23 - Runtime polymorphism by virtual functions

Dr. Bhushan Trivedi 10 Object Oriented Concepts & Programming

The player hierarchy decides the points based on who the player is and few other attributes.

In fact, we do not need to define such a virtual function. We may define another non-

member non-virtual function. getPoints(Player) to look at what is the public information available

about the player and return points the player has earned. Similarly, one can also define

similar non-member non-virtual function initPoints(Player) for initiating points, addPoints(Player) for

adding points and subPoints(Player) for subtracting points for a given player.

The above-mentioned process may not be feasible if the required information is not publicly

available or the situation demands real runtime decision making but the point is, one must

look for alternatives to virtual functions before making a decision.

Summary
In this module, we have looked at the difference between a compile time and runtime

polymorphism. We have seen that this pointer is available to a function to have an access to

the invoking object. We have seen how the hierarchy of the classes can redefine functions of

the base class with the same name. When a function is redefined with a virtual keyword

attached in the beginning, we can call it a virtual function. A virtual function, unlike a normal

function, is resolved at runtime. We have seen an example of how one can define and use

virtual functions in a program in this module. We finished with a note that a programmer

should be able to look for alternatives to the virtual function as they offer flexibility but at the

cost of performance at runtime.

