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Module-2: Eulerian and Hamiltonian Graphs

Objectives

• Eulerian paths and Eulerian graphs

• Applications of Eulerian graphs

• Hamiltonian paths and Hamiltonian graphs

There are many games and puzzles which can be analyzed by graph theoretic concepts. In fact,

the two early discoveries which led to the existence of graphs arose from puzzles, namely, the

Königsberg Bridge Problem and the Hamiltonian Game. These puzzles also resulted in the study

of special types of graphs, now called Eulerian graphs and Hamiltonian graphs. Due to the rich

structure of these graphs, they find wide use both in research and application.

Definition 1. An Eulerian path in a multi graph is a path that includes each edge exactly once and

every vertex at least once.

Eulerian circuit: It is an Eulerian path whose end points are identical.

Eulerian Graph: A graph which contains an Eulerian circuit.

The following graphs are Eulerian.

The following graphs are not Eulerian.
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Theorem 2. An undirected multi graph has an Eulerian circuit if and only if it is connected and all

its vertices are of even degree.

Proof. Let X = (V,E) be an Eulerian graph.

Claim: The degree of each vertex is even.

As X is an Eulerian graph, it contains an Eulerian circuit, say C, which in particular is a closed walk.

Let this walk start and end at the vertex u ∈V . Since, C traverses each edge exactly once, each visit

of C to an intermediate vertex v of C contributes two (first reach v and then go out from v) to the

degree of v. So, deg(v) is even for every such vertex. Each intermediate visit to u contributes two to

deg(u) and also the initial and final edges of C contribute one each to deg(u). Hence, deg(u) is also

even.

Conversely, suppose X is a connected graph and degree of each vertex of X be even.

Claim: X has an Eulerian circuit

We prove the result by induction on m, the number of edges of X . Note that the result is clearly true

if m = 3,4. So, let the result be true for any graph that has fewer than m edges and let X = (V,E) be

a graph on m edges.

As deg(v)≥ 2 for all v ∈V , X contains a cycle. Let C be a closed walk in X of maximum length.

If C contains all the edges of X , we are done. So, on the contrary, assume that the graph X \E(C) is

a non-trivial even degree graph. Let C1 be one of the non-trivial components of X \E(C). Then, C1

is an even connected graph and C1 has less number of edges than X . Thus, by induction hypothesis,

C1 is Eulerian with, say C̃1, as its Eulerian circuit. Moreover, C1 has a vertex v in common with C.

Hence, we have obtained an Eulerian circuit C̃1∪C which starts and ends at the vertex v. Also, the

length of C̃1∪C is strictly larger than that of C. This contradicts our assumption that C was a closed

walk of maximum length. Hence, X is indeed Eulerian.

Example 3. 1. The complete graph Kn is Eulerian if and only if n is odd.
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2. All cycle graphs are Eulerian.

3. The complete bipartite graphs Km,n are Eulerian if and only if both m,n are even.

4. All trees and wheel graphs are not Eulerian.

Theorem 4. A non-directed multi graph has an Eulerian path if and only if it is connected and has

exactly zero or two vertices of odd degree.

Proof. Let X be a non-directed multi graph. If X has an Eulerian path then clearly X is connected.

By definition, the end vertices of this path, say u0 and uk, have odd degrees and the rest of the

vertices have even degree. If u0 = uk, then X has no vertex of odd degree, else, u0 and uk are the

only vertices of odd degree.

Conversely, let X be a connected graph having exactly zero or two vertices of odd degree. If X

has no vertex of odd degree, directly apply Theorem 2 to get the required result. If X has exactly

two vertices of odd degree then consider the new graph X̃ which is obtained from X by joining the

two odd vertices. Now, apply Theorem 2 to X̃ . Hence, the required result follows.

Theorem 5. A connected graph X is Eulerian if and only if its edge set can be decomposed into

cycles.

Proof. Let X = (V,E) be a connected graph and suppose that X can be decomposed into cycles. If

k of these cycles are incident at a particular vertex, say v, then deg(v) = 2k. Therefore, the degree

of every vertex of X is even and hence X is Eulerian.

Conversely, let X be Eulerian. We show X can be decomposed into cycles. To prove this, we

use induction on the number of edges. Since deg(v)≥ 2 for each v ∈V (X), X has a cycle, say C.

Then E(X)\E(C) is possibly a disconnected graph, each of whose components C1,C2, . . . ,Ck is an

even degree graph and hence Eulerian. By the induction hypothesis, each Ci is a disjoint union of

cycles. These together with C provides a partition of E(X) into cycles

• A multi graph is said to be traversable if it has an Eulerian path.
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• A directed multi graph X is said to have an Eulerian circuit if it is unilaterally connected and

the in-degree of every vertex is equal to its out degree.

Definition 6. Let X be a connected multi graph. The process of adding edges to X so that each vertex

of X has even degree (so that the resultant graph has an Eulerian circuit) is called Eulerization

of the graph X. A minimal Eulerization of X is an Eulerization of X with as few extra edges as

possible.

Few applications of Eulerian graphs/digraphs

1. Kolam It is a form of drawing that is drawn by using rice flour/chalk/chalk powder/white

rock powder often using naturally/synthetically colored powders in Tamil Nadu, Karnataka,

Andhra Pradesh, Kerala and some parts of Goa, Maharashtra, Indonesia, Malaysia, Thailand

and a few other Asian countries. One type of kolam is called kambi kolam which is related to

Eulerian graphs. One can convert a kolam drawing in to a graph as follows: assign a vertex at

each crossing of kolam. But there is restriction on drawing of edges, edges cannot be drawn

freely there is a particular pattern to follow. The single (one should not lift hand) kambi kolam

will then be an Eulerian graph with the drawing starting and ending in the same vertex and

passing through every edge of the graph only once.

2. Chinese Postman Problem It is the problem that a Postman faces: he wishes to travel along

every road in a city in order to deliver letters, with the least possible distance. The problem is

how to find a shortest closed walk of the graph in which each edge is traversed at least once,

rather than exactly once.

3. Teleprinter’s problem How long is a longest circular (or cyclic) sequence of 1′s and 0′s such

that no subsequence of r bits appears more than once in the sequence? Construct one such

largest sequence.

Solution:
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• As we know there are 2r distinct r-tuples that can be formed with digits 0 and 1. So, the

sequence can be no longer than 2r bits long. We shall construct a circular sequence of

length 2r with the required property that no subsequence of r bits be repeated.

• Construct a digraph X whose vertices are r− 1 binary tuples. Clearly there are 2r−1

vertices in X .

• Let x1x2 . . .xr−1 be an arbitrary vertex where each xi = 0 or 1.

• Draw directed edges from this vertex (x1x2 . . .xr−1) to (x2x3 . . .xr−10) and x2x3 . . .xr−11

and label these edges as x1x2 . . .xr−10 and x1x2 . . .xr−11, respectively.

• From this construction, we see that the in-degree and the out-degree of each vertex is

the same and it equals 2. Hence, the resulting digraph is an Eulerian digraph.

The required sequence can be obtained from this Eulerian circuit by taking the first bit of

the label on the edge. The circular arrangement can be achieved by joining two ends of the

sequence. The following digraph illustrates the case for r = 3.

00

01

10

11e6 = 101

e1 = 000 e4 = 111
e2 = 001 e3 = 011

e7 = 010

e5 = 110e8 = 100

One of the Euler circuit in the above digraph is e1e2e3e4e5e6e7e8. The corresponding sequence

is 00011101. This sequence is constructed by taking the first bits of e1,e2, . . . ,e8. Another

way of looking at the sequence is that the first three bits correspond to e1, the second, third

and fourth bits correspond to e2 and so on, with the last three bits corresponding to e6
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( 000︸︷︷︸
e1

11 101︸︷︷︸
e6

). Note that this is a circular sequence and hence e7 is obtained by taking the last

two bits and the first bit, whereas e8 is obtained by taking the last bit and the first two bits.

0.1 Hamiltonian graph

Hamiltonian path : A simple path that consists of all the vertices of X .

Hamiltonian Cycle: It is a Hamiltonian path whose end vertices are identical.

Hamiltonian graph : A graph which consists of a Hamiltonian cycle.

• The cycle graph Cn for n≥ 3 is a Hamiltonian graph.

• The complete graph Kn (n≥ 3) is a Hamiltonian graph.

• The complete bipartite graph Km,n is Hamiltonian if and only if m = n > 1.

• If a graph X has n vertices then a Hamiltonian path must consist of exactly n−1 edges and a

Hamiltonian cycle will contain exactly n edges.

• If we remove one edge from a Hamiltonian cycle, we get a Hamiltonian path.

• No bipartite graph with odd number of vertices can be a Hamiltonian graph.

Proof. Let X = (V,E) be a bipartite graph with bipartition V =V1∪V2. Then, every Hamil-

tonian cycle in X must visit all the vertices of X . As X is bipartite, this cycle will have the

form

a1,b1,a2,b2, . . .ak,bk,a1,

where ai ∈ V1 and bi ∈ V2, with 1 ≤ i ≤ k. As it is a cycle, it begins and ends at the same

vertex, say a1. Thus, we see that the number of vertices in the graph must be 2k.

• If X has a Hamiltonian cycle, then the degree of every vertex is ≥ 2.
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• If X has a Hamiltonian cycle then the edges incident with a vertex of degree 2 must be

included in the cycle.

Theorem 7. (Ore’s theorem) Let X be a graph on n vertices with n≥ 3. If deg(x)+deg(y)≥ n, for

every pair of non adjacent vertices x,y in X, then X has a Hamiltonian cycle.

Proof. On the contrary, assume that X is not a Hamiltonian graph. Let Y be a graph obtained from

X by adding edges to X so that Y is also not a Hamiltonian graph, but by adding one more edge to

Y , the new graph becomes a Hamiltonian graph. Since Kn is a Hamiltonian graph Y 6= Kn. Hence,

there exists a,b ∈V (Y ) =V (X) such that the vertices a and b are not adjacent in Y .

Let Z = (V,E(Y )∪{a,b}). Then, by the construction of Y , Z is a Hamiltonian graph. Let C be

a Hamiltonian cycle in Z. Note that the edge {a,b} is contained in C as Z is a Hamiltonian graph

whereas Y was not a Hamiltonian graph. We label the n vertices in C as a = v1,b = v2,v3, . . . ,vn

such that {vi,vi+1} is an edge in Z, for 1≤ i≤ n−1. Moreover, {vn,v1} is also an edge in Z as C

is a cycle. In other words, C = [a = v1,b = v2,v3, . . . ,vn,a] is a Hamiltonian cycle.

Now, we show that whenever {b,vi} ∈ E(Y ), then {a,vi−1} /∈ E(Y ), for 3 ≤ i ≤ n. For if,

both the edges {b,vi},{a,vi−1} ∈ E(Y ), then b,vi,vi+1, . . . ,vn,a,vi−1,vi−2, . . . ,v3,b becomes an

Hamiltonian cycle in Y , a contradiction, as Y is not a Hamiltonian graph. Therefore, for each vi, 3≤

i≤ n at most one of the edges {b,vi} or {a,vi−1} is in E(Y ). Consequently, degY (a)+degY (b)< n.

Hence, our assumption that X is not a Hamiltonian graph is false.

Theorem 8 (Dirac’s theorem). A sufficient condition for a simple graph X to have a Hamiltonian

cycle is that the degree of every vertex of X be at least n/2.

Proof. Let X be a graph with n≥ 3 vertices and let the degree of every vertex in X be≥ n
2 . Then, the

sum of degrees of any two non-adjacent vertices is ≥ n. Thus, by Ore’s theorem, X is a Hamiltonian

graph.

Theorem 9. If X is a graph on n vertices with n ≥ 3 such that |E(X)| ≥
(n−1

2

)
+2 then, X has a

Hamiltonian cycle.
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Proof. Let X be a graph on n vertices with n ≥ 3 such that |E(X)| ≥
(n−1

2

)
+ 2. If X = Kn then,

we are done as Kn is a Hamiltonian graph. So, let us assume that X 6= Kn. Hence, there exists

a,b ∈V (X) such that {a,b} /∈ E(X). Now, we show that deg(a)+deg(b)≥ n.

Let Y be a graph obtained from X by deleting the vertices a,b. Then, |E(X)|= |E(Y )|+deg(a)+

deg(b). Furthermore, we see that as Y is a simple graph on n−2 vertices, |E(Y )| ≤
(n−2

2

)
. Thus,(

n−1
2

)
+2≤ |E(X)|= |E(Y )|+deg(a)+deg(b)≤

(
n−2

2

)
+deg(a)+deg(b).

Hence, deg(a)+deg(b)≥ n.

Example 10. Show that a complete graph on n vertices contains (n−1)/2 edge disjoint Hamiltonian

cycles, whenever n≥ 3 is odd.

Traveling salesman problem (TSP)

Given a collection of cities and the cost of travel between each pair of them, the traveling salesman

problem, or TSP for short, is to find the cheapest way of visiting all of the cities and returning to

your starting point. In the standard version of this problem, the travel costs are symmetric in the

sense that traveling from city A to city B costs just as much as traveling from B to A.

The simplicity of the statement of the problem is deceptive as the TSP is one of the most

intensely studied problems in computational mathematics and yet has no effective solution method

for the general case. Indeed, the resolution of the TSP would settle the P versus NP-problem and

fetch a 1,000,000 dollars prize from the Clay Mathematics Institute.

Although the complexity of the TSP is still unknown, for over 50 years its study has led the way

to improved solution methods in many areas of mathematical optimization.

It is easy to calculate the number of different tours through n cities: given a starting city, we have

n−1 choices for the second city, n−2 choices for the third city, etc. Multiplying these together we

get (n−1)! = (n−1)(n−2) · · ·3 ·2 ·1. Now since our travel costs do not depend on the direction

we take around the tour, we should divide this number by 2, which implies that there are (n−1)!
2

different possible tours.
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This is a very large number and is often cited as one of the reasons for not being able to solve

the TSP. It is true that the rapidly growing value of (n−1)!
2 rules out the possibility of checking all

tours one by one, but there are other problems that are easy to solve (such as the minimum spanning

tree), where the number of solutions for n points grows even more quickly.

Example 11. 1. The complete graph Kn for n odd is both a Hamiltonian graph as well as an

Eulerian. The Cycle graph Cn, for n≥ 3, is also both a Hamiltonian graph and an Eulerian

graph. Wheel graphs (WHn, for n≥ 3) are Hamiltonian graphs but are not Eulerian graphs.

The complete bipartite graphs Km,n, whenever m = n and m is even, are also examples of

graphs that are both Hamiltonian and Eulerian.

2.

Hamiltonian Nonhamiltonian

Eulerian

Noneulerian

Example 12. Show that the Petersen graph has an Hamiltonian path but no Hamiltonian cycle.

c1

c2

c3
c4

c5

c6c7

c8 c9

c10
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Clearly, c1c2c3c4c5c10c8c6c9c7 is a Hamiltonian path. Now, we prove that the Petersen graph

has no Hamiltonian cycle by contradiction. Suppose the Petersen graph is Hamiltonian. Then, it

contains a cycle of length 10. But the degree of each vertex is 3, hence we have to add five chords

into this cycle to get the original graph, but this is not possible as girth of the Petersen graph is 5.


	 Hamiltonian graph

