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Module-4: Introduction to Congruences

Objectives

Introduction to Congruence and its properties.

System of residues.

Applications of congruences in divisibility.

Fermat Little Theorem.

Definition 1. Let n be a positive integer and a,b € Z. Then a and b are said to be congruent modulo
n or a is said to be congruent to b modulo n, denoted a = b (mod n), if n divides a — b. That is,

there exists k € 7, such that a — b = kn.

e Since 1 divides every integer. So any two integers are congruent modulo 1.
e Two integers are congruent modulo 2 if and only if either both are even or both are odd.

e Leta € Z,n € N. Then, by division algorithm we have a = ng + r, where 0 < r < n. In other
words, a = r (mod n). Since r € {0,1,2,...,n— 1}, every integer is congruent to exactly

one of the element from the set {0,1,2,...,n— 1}. This set is called the set of least residues

modulo n.
e Fix a positive integer m and let by, by, ..., b,, be any collection of m integers that are congruent
t00,1,2,...,m— 1 is some order. Then, the set {b},by,...,b,} is called a complete system

of residues modulo m. It is easy to see that set of least residues is also a complete system of
residues. And the set of complete system of residues is not unique. In fact, it is easy to see
that any set of m integers is complete system of residues if and only if no two of them are

congruent modulo m.



Theorem 2. Let m > 1 be a fixed positive integer and let a,b,c € 7. Then, the following hold:
1. a=a (mod m).
2. Ifa=b (mod m), then b =a (mod m).
3. Ifa=b (mod m) and b =c (mod m), then a = ¢ (mod m).
4. Ifa=b (mod m) and c =d (mod m), then a+c=b+d (mod m) and ac =bd (mod m).
5. Ifa=b (mod m), then a+c =b+c (mod m) and ac = bc (mod m) for any c € Z.
6. Ifa=b (mod m), then a" = b" (mod m) for any positive integer n.
7. Ifac = bc (mod m), then a=b (mod %), where d = gcd(c,m).
8. Ifa=b (mod m), and k|m then a =b (mod k).
9. Ifa=b (mod m) and c € N, then ca = cb (mod cm).
10. Ifa=b (mod m) and the integers a,b,m are all divisible by d > 0, then 4 =% (mod ).

Proof. Proof of Part 1: Since m|0 =a—a, a =a (mod m).

Proof of Part 2: Since a=b (mod m), som | a—b. Hence, a—b = mgq. Thus, m |m(—q) =b—a.
Hence, b =a (mod m).

Proof of Part 3: If a = b (mod m) and b = ¢ (mod m) then m | a— b and m | b — c. Hence, by
the linearity property m | a —c = (a—b) + (b —c¢) and thus a = ¢ (mod m).

Proof of Part 4: Since a — ¢ = a+ (—c), it suffices to prove only the “+ case.” By assumption,
m|a—>band m | c—d. Therefore, by linearity, m | (a+c¢) — (b+d) = (a—b) + (c —d) and
m|c(a—b)+b(c—d) =ac— bd. Hence

a+c=b+d (modm)andac=bd (mod m).

Proof of Part 5: Sincea=5b (mod m), m|a—>b. Thus,m|c(a—b)andm|(a+c—c—b)=a—b.

Hence, a4+ c=b+c¢ (mod m) and ac = bc (mod m).



Proof of Part 6: We prove a" = b" (mod m) by induction on n.

If n = 1, the result is true by the assumption that a = b (mod m).

Assume that the result holds for n = k. That is, ¢* = b* (mod m). We also have a = b (mod m).
Thus, ad® = bb* (mod m) or equivalently, **! = b**! (mod m). Hence, by the Principle of
Mathematical Induction (PMI), the result holds for all n € N.

Proof of Part 7: As ac = bc (mod m), we get m | ac — bd = c(a — b). Thus, c(a — b) = mk, for
some k € Z. Since, (¢,m) = d, ¢ = dk, and m = dk, for some ky,k, € Z. Thus, dki(a —b) = dk;
or kp|la—b as ged(ky, k) = 1.

Thus,a=b (mod k =%).

Proof of Part 8, 9 and 10 are left for the readers. OJ

Definition 3. Let m € N be a given. For each a € Z, the residue class (or the congruence class or

equivalence class) of a modulo m, denoted [a| or |a]y, is defined as
la| ={x€Z|x=a (mod m)}.
Thus, the set {[0],[1],[2],...,[m — 1]}, denoted Z,,, has some nice properties.

Y. cix* be a polynomial function of x with integral coefficients cy. Ifa = b
k=0

Theorem 4. Let p(x) = y
(mod n), then p(a) = p(b) (mod n).

Proof. Since,a=b (mod n), we have seen that a* = b* (mod n) and hence, c;a* = c;b* (mod n),

fork=0,1,2,...,m. Adding these m + 1 congruences, we get
m m
pla) = Z cradt = Z cxb* = p(b)  (mod n).
k=0 k=0
[

If p(x) is a polynomial with integral coefficients, we say that a is a solution of the congruence

p(x) =0 (mod n) if p(a) =0 (mod n).

Corollary 5. If a is a solution of p(x) =0 (mod n) and a =b (mod n), then b is also a solution

of p(x) =0 (mod n).



Theorem 6. Let M = a,, 10" +a,, 110"~ 4. .. 4-10a; +ag be the decimal expansion of the positive

integer M, 0 < a; < 10, and let S = ap+ay + - - - + a. Then, 9|M if and only if 9|S.

m

Proof. Let p(x) = ¥, aix*. Then p(10) = M and p(1) = S. But, 10 =1 (mod 9) and hence
k=0

p(10) = p(1) (mod 9). Thus, we have M =S (mod 9). O

Theorem 7. Let M = a,, 10" +a,,_1 10"~ - .4+ 10a; + ag be the decimal expansion of the positive
integer M, 0 < a;, < 10, and let T = ap—ay +---+ (—1)"ay,,. Then, 11|M if and only if 11|T.

m

Proof. Let p(x) = ¥, a;x*. Then p(10) =M and p(—1) =T. As 10 = —1 (mod 11), we get
k=0

p(10) = p(—1) (mod 11) and hence, M =T (mod 11). O

Fermat’s Little Theorem

It is easy to see that

1* = 1 (mod5);2*=1 (mod5);3*=1 (mod5);4*=1 (mod >5)
54 = 0 (mod35)
6* = 1 (mod5);7*=1 (mod5);8*=1 (mod5);9*=1 (mod 5)
10* = 0 (mod 5)

Theorem 8. [Fermat’s Little Theorem] Let p be a prime and suppose that p { a. Then al~l=1

(mod p).
Proof. We begin by considering the first p — 1 positive multiples of a. That is, consider the integers
a,2a,3a,...,(p—1)a.

e None of these numbers is congruent to another modulo p.
Let ra=sa (mod p) for 1 <r<s<p-—1. As pfa, acanbe canceled to give r=s (mod p),

which is impossible as 0 < s —r < p.



e Similarly, it is easy to check that none of these numbers is congruent to zero modulo p.
Hence, {a (mod p),2a (mod p),...,(p—1)a (mod p)} ={1,2,...,p—1}. Therefore,
a-2a---(p—1)a=1-2---(p—1) (mod p).

Or equivalently,
a? Yp—1)'=(p—1)! (mod p).

Since, ged(p, (p — 1)!) = 1, using Theorem 2.thm:procon:7, we have a”~! =1 (mod p). O
Corollary 9. If p is prime, then a? = a (mod p) for any integer a.

Proof. 1f p|a, then p|a” — a and hence the result is true.
If p { a, then using theorem 8, @”~! =1 (mod p). Now, multiplying both sides by a, we get a” = a
(mod p). O

Alternate proof: The result is clearly true for p = 2 as both a and a® have the same parity. Let
p be an odd prime, then a” and a have same sign. Thus, it is sufficient to prove the result for positive
integers. So, let us fix a prime p and prove the result using induction on a. If @ = 1, then clearly
aP? =a (mod p) holds.

Assume the result holds for a, i.e., a”? = a (mod p). We need to prove that (a+ 1)’ = (a+ 1)
(mod p).
p!

' for k=1,2,...,p— 1. Hence,

~ K(p—k)
(a+1)? =a” +1 (mod p). But, by induction hypothesis, a” = a (mod p). Hence, we get

We first observe that since p is a prime p | (llz)

(a+1)P=a’+1=(a+1) (mod p).



