Number Theory and Graph Theory

Chapter 2

Prime numbers and congruences.

By

A. Satyanarayana Reddy

Department of Mathematics

Shiv Nadar University
Uttar Pradesh, India

E-mail: satya8118@gmail.com

Module-4: Introduction to Congruences

Objectives

- Introduction to Congruence and its properties.
- System of residues.
- Applications of congruences in divisibility.
- Fermat Little Theorem.

Definition 1. Let n be a positive integer and $a, b \in \mathbb{Z}$. Then a and b are said to be congruent modulo n or a is said to be congruent to b modulo n, denoted $a \equiv b(\bmod n)$, if n divides $a-b$. That is, there exists $k \in \mathbb{Z}$ such that $a-b=k n$.

- Since 1 divides every integer. So any two integers are congruent modulo 1.
- Two integers are congruent modulo 2 if and only if either both are even or both are odd.
- Let $a \in \mathbb{Z}, n \in \mathbb{N}$. Then, by division algorithm we have $a=n q+r$, where $0 \leq r<n$. In other words, $a \equiv r(\bmod n)$. Since $r \in\{0,1,2, \ldots, n-1\}$, every integer is congruent to exactly one of the element from the set $\{0,1,2, \ldots, n-1\}$. This set is called the set of least residues modulo n.
- Fix a positive integer m and let $b_{1}, b_{2}, \ldots, b_{m}$ be any collection of m integers that are congruent to $0,1,2, \ldots, m-1$ is some order. Then, the set $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ is called a complete system of residues modulo m. It is easy to see that set of least residues is also a complete system of residues. And the set of complete system of residues is not unique. In fact, it is easy to see that any set of m integers is complete system of residues if and only if no two of them are congruent modulo m.

Theorem 2. Let $m>1$ be a fixed positive integer and let $a, b, c \in \mathbb{Z}$. Then, the following hold:

1. $a \equiv a(\bmod m)$.
2. If $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$.
3. If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.
4. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a \pm c \equiv b \pm d(\bmod m)$ and $a c \equiv b d(\bmod m)$.
5. If $a \equiv b(\bmod m)$, then $a+c \equiv b+c(\bmod m)$ and $a c \equiv b c(\bmod m)$ for any $c \in \mathbb{Z}$.
6. If $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$ for any positive integer n.
7. If $a c \equiv b c(\bmod m)$, then $a \equiv b\left(\bmod \frac{m}{d}\right)$, where $d=\operatorname{gcd}(c, m)$.
8. If $a \equiv b(\bmod m)$, and $k \mid m$ then $a \equiv b(\bmod k)$.
9. If $a \equiv b(\bmod m)$ and $c \in \mathbb{N}$, then $c a \equiv c b(\bmod c m)$.
10. If $a \equiv b(\bmod m)$ and the integers a, b, m are all divisible by $d>0$, then $\frac{a}{d} \equiv \frac{b}{d}\left(\bmod \frac{m}{d}\right)$.

Proof. Proof of Part 1: Since $m \mid 0=a-a, a \equiv a(\bmod m)$.
Proof of Part 2: Since $a \equiv b(\bmod m)$, so $m \mid a-b$. Hence, $a-b=m q$. Thus, $m \mid m(-q)=b-a$. Hence, $b \equiv a(\bmod m)$.

Proof of Part 3: If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$ then $m \mid a-b$ and $m \mid b-c$. Hence, by the linearity property $m \mid a-c=(a-b)+(b-c)$ and thus $a \equiv c(\bmod m)$.

Proof of Part 4: Since $a-c=a+(-c)$, it suffices to prove only the " + case." By assumption, $m \mid a-b$ and $m \mid c-d$. Therefore, by linearity, $m \mid(a+c)-(b+d)=(a-b)+(c-d)$ and $m \mid c(a-b)+b(c-d)=a c-b d$. Hence

$$
a+c \equiv b+d \quad(\bmod m) \text { and } a c \equiv b d \quad(\bmod m) .
$$

Proof of Part 5: Since $a \equiv b(\bmod m), m \mid a-b$. Thus, $m \mid c(a-b)$ and $m \mid(a+c-c-b)=a-b$. Hence, $a+c \equiv b+c(\bmod m)$ and $a c \equiv b c(\bmod m)$.

Proof of Part 6: We prove $a^{n} \equiv b^{n}(\bmod m)$ by induction on n.
If $n=1$, the result is true by the assumption that $a \equiv b(\bmod m)$.
Assume that the result holds for $n=k$. That is, $a^{k} \equiv b^{k}(\bmod m)$. We also have $a \equiv b(\bmod m)$. Thus, $a a^{k} \equiv b b^{k}(\bmod m)$ or equivalently, $a^{k+1} \equiv b^{k+1}(\bmod m)$. Hence, by the Principle of Mathematical Induction (PMI), the result holds for all $n \in \mathbb{N}$.

Proof of Part 7: As $a c \equiv b c(\bmod m)$, we get $m \mid a c-b d=c(a-b)$. Thus, $c(a-b)=m k$, for some $k \in \mathbb{Z}$. Since, $(c, m)=d, c=d k_{1}$ and $m=d k_{2}$, for some $k_{1}, k_{2} \in \mathbb{Z}$. Thus, $d k_{1}(a-b)=d k_{2}$ or $k_{2} \mid a-b$ as $\operatorname{gcd}\left(k_{1}, k_{2}\right)=1$.

Thus, $a \equiv b\left(\bmod k_{2}=\frac{m}{d}\right)$.
Proof of Part 8, 9 and 10 are left for the readers.
Definition 3. Let $m \in \mathbb{N}$ be a given. For each $a \in \mathbb{Z}$, the residue class (or the congruence class or equivalence class) of a modulo m, denoted $[a]$ or $[a]_{m}$, is defined as

$$
[a]=\{x \in \mathbb{Z} \mid x \equiv a \quad(\bmod m)\}
$$

Thus, the set $\{[0],[1],[2], \ldots,[m-1]\}$, denoted \mathbb{Z}_{m}, has some nice properties.
Theorem 4. Let $p(x)=\sum_{k=0}^{m} c_{k} x^{k}$ be a polynomial function of x with integral coefficients c_{k}. If $a \equiv b$ $(\bmod n)$, then $p(a) \equiv p(b)(\bmod n)$.

Proof. Since, $a \equiv b(\bmod n)$, we have seen that $a^{k} \equiv b^{k}(\bmod n)$ and hence, $c_{k} a^{k} \equiv c_{k} b^{k}(\bmod n)$, for $k=0,1,2, \ldots, m$. Adding these $m+1$ congruences, we get

$$
p(a)=\sum_{k=0}^{m} c_{k} a^{k} \equiv \sum_{k=0}^{m} c_{k} b^{k}=p(b) \quad(\bmod n)
$$

If $p(x)$ is a polynomial with integral coefficients, we say that a is a solution of the congruence $p(x) \equiv 0(\bmod n)$ if $p(a) \equiv 0(\bmod n)$.

Corollary 5. If a is a solution of $p(x) \equiv 0(\bmod n)$ and $a \equiv b(\bmod n)$, then b is also a solution of $p(x) \equiv 0(\bmod n)$.

Theorem 6. Let $M=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\cdots+10 a_{1}+a_{0}$ be the decimal expansion of the positive integer $M, 0 \leq a_{k}<10$, and let $S=a_{0}+a_{1}+\cdots+a_{m}$. Then, $9 \mid M$ if and only if $9 \mid S$.

Proof. Let $p(x)=\sum_{k=0}^{m} a_{k} x^{k}$. Then $p(10)=M$ and $p(1)=S$. But, $10 \equiv 1(\bmod 9)$ and hence $p(10) \equiv p(1)(\bmod 9)$. Thus, we have $M \equiv S(\bmod 9)$.

Theorem 7. Let $M=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\cdots+10 a_{1}+a_{0}$ be the decimal expansion of the positive integer $M, 0 \leq a_{k}<10$, and let $T=a_{0}-a_{1}+\cdots+(-1)^{m} a_{m}$. Then, $11 \mid M$ if and only if $11 \mid T$.

Proof. Let $p(x)=\sum_{k=0}^{m} a_{k} x^{k}$. Then $p(10)=M$ and $p(-1)=T$. As $10 \equiv-1(\bmod 11)$, we get $p(10) \equiv p(-1)(\bmod 11)$ and hence, $M \equiv T(\bmod 11)$.

Fermat's Little Theorem

It is easy to see that

$$
\begin{aligned}
1^{4} & \equiv 1 \quad(\bmod 5) ; 2^{4} \equiv 1 \quad(\bmod 5) ; 3^{4} \equiv 1 \quad(\bmod 5) ; 4^{4} \equiv 1 \quad(\bmod 5) \\
5^{4} & \equiv 0 \quad(\bmod 5) \\
6^{4} & \equiv 1 \quad(\bmod 5) ; 7^{4} \equiv 1 \quad(\bmod 5) ; 8^{4} \equiv 1 \quad(\bmod 5) ; 9^{4} \equiv 1 \quad(\bmod 5) \\
10^{4} & \equiv 0 \quad(\bmod 5)
\end{aligned}
$$

Theorem 8. [Fermat's Little Theorem] Let p be a prime and suppose that $p \nmid a$. Then $a^{p-1} \equiv 1$ $(\bmod p)$.

Proof. We begin by considering the first $p-1$ positive multiples of a. That is, consider the integers

$$
a, 2 a, 3 a, \ldots,(p-1) a
$$

- None of these numbers is congruent to another modulo p.

Let $r a \equiv s a(\bmod p)$ for $1 \leq r<s \leq p-1$. As $p \nmid a, a$ can be canceled to give $r \equiv s(\bmod p)$, which is impossible as $0<s-r<p$.

- Similarly, it is easy to check that none of these numbers is congruent to zero modulo p.

Hence, $\{a(\bmod p), 2 a(\bmod p), \ldots,(p-1) a(\bmod p)\}=\{1,2, \ldots, p-1\}$. Therefore,

$$
a \cdot 2 a \cdots(p-1) a \equiv 1 \cdot 2 \cdots(p-1) \quad(\bmod p)
$$

Or equivalently,

$$
a^{p-1}(p-1)!\equiv(p-1)!\quad(\bmod p)
$$

Since, $\operatorname{gcd}(p,(p-1)!)=1$, using Theorem 2.thm:procon:7, we have $a^{p-1} \equiv 1(\bmod p)$.
Corollary 9. If p is prime, then $a^{p} \equiv a(\bmod p)$ for any integer a.

Proof. If $p \mid a$, then $p \mid a^{p}-a$ and hence the result is true.
If $p \nmid a$, then using theorem $8, a^{p-1} \equiv 1(\bmod p)$. Now, multiplying both sides by a, we get $a^{p} \equiv a$ $(\bmod p)$.

Alternate proof: The result is clearly true for $p=2$ as both a and a^{2} have the same parity. Let p be an odd prime, then a^{p} and a have same sign. Thus, it is sufficient to prove the result for positive integers. So, let us fix a prime p and prove the result using induction on a. If $a=1$, then clearly $a^{p} \equiv a(\bmod p)$ holds.

Assume the result holds for a, i.e., $a^{p} \equiv a(\bmod p)$. We need to prove that $(a+1)^{p} \equiv(a+1)$ $(\bmod p)$.

We first observe that since p is a prime $p \left\lvert\,\binom{ p}{k}=\frac{p!}{k!(p-k)!}\right.$ for $k=1,2, \ldots, p-1$. Hence, $(a+1)^{p} \equiv a^{p}+1(\bmod p)$. But, by induction hypothesis, $a^{p} \equiv a(\bmod p)$. Hence, we get $(a+1)^{p} \equiv a^{p}+1 \equiv(a+1)(\bmod p)$.

