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Module-4: Introduction to Congruences

Objectives

• Introduction to Congruence and its properties.

• System of residues.

• Applications of congruences in divisibility.

• Fermat Little Theorem.

Definition 1. Let n be a positive integer and a,b∈Z. Then a and b are said to be congruent modulo

n or a is said to be congruent to b modulo n, denoted a ≡ b (mod n), if n divides a−b. That is,

there exists k ∈ Z such that a−b = kn.

• Since 1 divides every integer. So any two integers are congruent modulo 1.

• Two integers are congruent modulo 2 if and only if either both are even or both are odd.

• Let a ∈ Z,n ∈ N. Then, by division algorithm we have a = nq+ r, where 0≤ r < n. In other

words, a ≡ r (mod n). Since r ∈ {0,1,2, . . . ,n− 1}, every integer is congruent to exactly

one of the element from the set {0,1,2, . . . ,n−1}. This set is called the set of least residues

modulo n.

• Fix a positive integer m and let b1,b2, . . . ,bm be any collection of m integers that are congruent

to 0,1,2, . . . ,m−1 is some order. Then, the set {b1,b2, . . . ,bm} is called a complete system

of residues modulo m. It is easy to see that set of least residues is also a complete system of

residues. And the set of complete system of residues is not unique. In fact, it is easy to see

that any set of m integers is complete system of residues if and only if no two of them are

congruent modulo m.
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Theorem 2. Let m > 1 be a fixed positive integer and let a,b,c ∈ Z. Then, the following hold:

1. a≡ a (mod m).

2. If a≡ b (mod m), then b≡ a (mod m).

3. If a≡ b (mod m) and b≡ c (mod m), then a≡ c (mod m).

4. If a≡ b (mod m) and c≡ d (mod m), then a± c≡ b±d (mod m) and ac≡ bd (mod m).

5. If a≡ b (mod m), then a+ c≡ b+ c (mod m) and ac≡ bc (mod m) for any c ∈ Z.

6. If a≡ b (mod m), then an ≡ bn (mod m) for any positive integer n.

7. If ac≡ bc (mod m), then a≡ b (mod m
d ), where d = gcd(c,m).

8. If a≡ b (mod m), and k|m then a≡ b (mod k).

9. If a≡ b (mod m) and c ∈ N, then ca≡ cb (mod cm).

10. If a≡ b (mod m) and the integers a,b,m are all divisible by d > 0, then a
d ≡

b
d (mod m

d ).

Proof. Proof of Part 1: Since m|0 = a−a, a≡ a (mod m).

Proof of Part 2: Since a≡ b (mod m), so m | a−b. Hence, a−b=mq. Thus, m |m(−q) = b−a.

Hence, b≡ a (mod m).

Proof of Part 3: If a≡ b (mod m) and b≡ c (mod m) then m | a−b and m | b− c. Hence, by

the linearity property m | a− c = (a−b)+(b− c) and thus a≡ c (mod m).

Proof of Part 4: Since a− c = a+(−c), it suffices to prove only the “+ case.” By assumption,

m | a− b and m | c− d. Therefore, by linearity, m | (a+ c)− (b+ d) = (a− b) + (c− d) and

m|c(a−b)+b(c−d) = ac−bd. Hence

a+ c≡ b+d (mod m) and ac≡ bd (mod m).

Proof of Part 5: Since a≡ b (mod m), m | a−b. Thus, m | c(a−b) and m | (a+c−c−b)= a−b.

Hence, a+ c≡ b+ c (mod m) and ac≡ bc (mod m).
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Proof of Part 6: We prove an ≡ bn (mod m) by induction on n.

If n = 1, the result is true by the assumption that a≡ b (mod m).

Assume that the result holds for n = k. That is, ak ≡ bk (mod m). We also have a≡ b (mod m).

Thus, aak ≡ bbk (mod m) or equivalently, ak+1 ≡ bk+1 (mod m). Hence, by the Principle of

Mathematical Induction (PMI), the result holds for all n ∈ N.

Proof of Part 7: As ac≡ bc (mod m), we get m | ac−bd = c(a−b). Thus, c(a−b) = mk, for

some k ∈ Z. Since, (c,m) = d, c = dk1 and m = dk2, for some k1,k2 ∈ Z. Thus, dk1(a−b) = dk2

or k2|a−b as gcd(k1,k2) = 1.

Thus, a≡ b (mod k2 =
m
d ).

Proof of Part 8, 9 and 10 are left for the readers.

Definition 3. Let m ∈ N be a given. For each a ∈ Z, the residue class (or the congruence class or

equivalence class) of a modulo m, denoted [a] or [a]m, is defined as

[a] = {x ∈ Z|x≡ a (mod m)}.

Thus, the set {[0], [1], [2], . . . , [m−1]}, denoted Zm, has some nice properties.

Theorem 4. Let p(x) =
m
∑

k=0
ckxk be a polynomial function of x with integral coefficients ck. If a≡ b

(mod n), then p(a)≡ p(b) (mod n).

Proof. Since, a≡ b (mod n), we have seen that ak ≡ bk (mod n) and hence, ckak ≡ ckbk (mod n),

for k = 0,1,2, . . . ,m. Adding these m+1 congruences, we get

p(a) =
m

∑
k=0

ckak ≡
m

∑
k=0

ckbk = p(b) (mod n).

If p(x) is a polynomial with integral coefficients, we say that a is a solution of the congruence

p(x)≡ 0 (mod n) if p(a)≡ 0 (mod n).

Corollary 5. If a is a solution of p(x)≡ 0 (mod n) and a≡ b (mod n), then b is also a solution

of p(x)≡ 0 (mod n).
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Theorem 6. Let M = am10m+am−110m−1+ · · ·+10a1+a0 be the decimal expansion of the positive

integer M, 0≤ ak < 10, and let S = a0 +a1 + · · ·+am. Then, 9|M if and only if 9|S.

Proof. Let p(x) =
m
∑

k=0
akxk. Then p(10) = M and p(1) = S. But, 10 ≡ 1 (mod 9) and hence

p(10)≡ p(1) (mod 9). Thus, we have M ≡ S (mod 9).

Theorem 7. Let M = am10m+am−110m−1+ · · ·+10a1+a0 be the decimal expansion of the positive

integer M, 0≤ ak < 10, and let T = a0−a1 + · · ·+(−1)mam. Then, 11|M if and only if 11|T .

Proof. Let p(x) =
m
∑

k=0
akxk. Then p(10) = M and p(−1) = T . As 10 ≡ −1 (mod 11), we get

p(10)≡ p(−1) (mod 11) and hence, M ≡ T (mod 11).

Fermat’s Little Theorem

It is easy to see that

14 ≡ 1 (mod 5); 24 ≡ 1 (mod 5); 34 ≡ 1 (mod 5); 44 ≡ 1 (mod 5)

54 ≡ 0 (mod 5)

64 ≡ 1 (mod 5); 74 ≡ 1 (mod 5); 84 ≡ 1 (mod 5); 94 ≡ 1 (mod 5)

104 ≡ 0 (mod 5)

Theorem 8. [Fermat’s Little Theorem] Let p be a prime and suppose that p - a. Then ap−1 ≡ 1

(mod p).

Proof. We begin by considering the first p−1 positive multiples of a. That is, consider the integers

a,2a,3a, . . . ,(p−1)a.

• None of these numbers is congruent to another modulo p.

Let ra≡ sa (mod p) for 1≤ r < s≤ p−1. As p - a, a can be canceled to give r≡ s (mod p),

which is impossible as 0 < s− r < p.
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• Similarly, it is easy to check that none of these numbers is congruent to zero modulo p.

Hence, {a (mod p),2a (mod p), . . . ,(p−1)a (mod p)}= {1,2, . . . , p−1}. Therefore,

a ·2a · · ·(p−1)a≡ 1 ·2 · · ·(p−1) (mod p).

Or equivalently,

ap−1(p−1)!≡ (p−1)! (mod p).

Since, gcd(p,(p−1)!) = 1, using Theorem 2.thm:procon:7, we have ap−1 ≡ 1 (mod p).

Corollary 9. If p is prime, then ap ≡ a (mod p) for any integer a.

Proof. If p|a, then p|ap−a and hence the result is true.

If p - a, then using theorem 8, ap−1 ≡ 1 (mod p). Now, multiplying both sides by a, we get ap ≡ a

(mod p).

Alternate proof: The result is clearly true for p = 2 as both a and a2 have the same parity. Let

p be an odd prime, then ap and a have same sign. Thus, it is sufficient to prove the result for positive

integers. So, let us fix a prime p and prove the result using induction on a. If a = 1, then clearly

ap ≡ a (mod p) holds.

Assume the result holds for a, i.e., ap ≡ a (mod p). We need to prove that (a+1)p ≡ (a+1)

(mod p).

We first observe that since p is a prime p |
(p

k

)
=

p!
k!(p− k)!

for k = 1,2, . . . , p− 1. Hence,

(a + 1)p ≡ ap + 1 (mod p). But, by induction hypothesis, ap ≡ a (mod p). Hence, we get

(a+1)p ≡ ap +1≡ (a+1) (mod p).


