Number Theory and Graph Theory

Chapter 2

Prime numbers and congruences.

By

duate Courses

A. Satyanarayana Reddy

Department of Mathematics

Shiv Nadar University

Uttar Pradesh, India

E-mail: satya8118@gmail.com

Objectives

- Introduction to Congruence and its properties.
- System of residues.
- Applications of congruences in divisibility.
- Fermat Little Theorem.

Definition 1. Let *n* be a positive integer and $a, b \in \mathbb{Z}$. Then *a* and *b* are said to be congruent modulo *n* or *a* is said to be congruent to *b* modulo *n*, denoted $a \equiv b \pmod{n}$, if *n* divides a - b. That is, there exists $k \in \mathbb{Z}$ such that a - b = kn.

- Since 1 divides every integer. So any two integers are congruent modulo 1.
- Two integers are congruent modulo 2 if and only if either both are even or both are odd.
- Let a ∈ Z, n ∈ N. Then, by division algorithm we have a = nq + r, where 0 ≤ r < n. In other words, a ≡ r (mod n). Since r ∈ {0,1,2,...,n-1}, every integer is congruent to exactly one of the element from the set {0,1,2,...,n-1}. This set is called the *set of least residues* modulo n.
- Fix a positive integer m and let b₁, b₂,..., b_m be any collection of m integers that are congruent to 0, 1, 2, ..., m 1 is some order. Then, the set {b₁, b₂,..., b_m} is called a *complete system of residues* modulo m. It is easy to see that set of least residues is also a complete system of residues. And the set of complete system of residues is not unique. In fact, it is easy to see that any set of m integers is complete system of residues if and only if no two of them are congruent modulo m.

Theorem 2. Let m > 1 be a fixed positive integer and let $a, b, c \in \mathbb{Z}$. Then, the following hold:

- 1. $a \equiv a \pmod{m}$.
- 2. If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
- 3. If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
- 4. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a \pm c \equiv b \pm d \pmod{m}$ and $ac \equiv bd \pmod{m}$.
- 5. If $a \equiv b \pmod{m}$, then $a + c \equiv b + c \pmod{m}$ and $ac \equiv bc \pmod{m}$ for any $c \in \mathbb{Z}$.
- 6. If $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$ for any positive integer n.

- gcd(c,m). 9. If $a \equiv b \pmod{m}$ and $c \in \mathbb{N}$, then $ca \equiv cb \pmod{cm}$. 0. If $a \equiv b \pmod{m}$ and the inter-10. If $a \equiv b \pmod{m}$ and the integers a, b, m are all divisible by d > 0, then $\frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$.

Proof. Proof of Part 1: Since $m|0 = a - a, a \equiv a \pmod{m}$.

Proof of Part 2: Since $a \equiv b \pmod{m}$, so $m \mid a-b$. Hence, a-b = mq. Thus, $m \mid m(-q) = b-a$. Hence, $b \equiv a \pmod{m}$.

Proof of Part 3: If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $m \mid a - b$ and $m \mid b - c$. Hence, by the linearity property $m \mid a - c = (a - b) + (b - c)$ and thus $a \equiv c \pmod{m}$.

Proof of Part 4: Since a - c = a + (-c), it suffices to prove only the "+ case." By assumption, $m \mid a - b$ and $m \mid c - d$. Therefore, by linearity, $m \mid (a + c) - (b + d) = (a - b) + (c - d)$ and m|c(a-b)+b(c-d)=ac-bd. Hence

 $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Proof of Part 5: Since $a \equiv b \pmod{m}$, $m \mid a-b$. Thus, $m \mid c(a-b)$ and $m \mid (a+c-c-b) = a-b$. Hence, $a + c \equiv b + c \pmod{m}$ and $ac \equiv bc \pmod{m}$.

Proof of Part 6: We prove $a^n \equiv b^n \pmod{m}$ by induction on *n*.

If n = 1, the result is true by the assumption that $a \equiv b \pmod{m}$.

Assume that the result holds for n = k. That is, $a^k \equiv b^k \pmod{m}$. We also have $a \equiv b \pmod{m}$. Thus, $aa^k \equiv bb^k \pmod{m}$ or equivalently, $a^{k+1} \equiv b^{k+1} \pmod{m}$. Hence, by the Principle of Mathematical Induction (PMI), the result holds for all $n \in \mathbb{N}$.

Proof of Part 7: As $ac \equiv bc \pmod{m}$, we get $m \mid ac - bd = c(a - b)$. Thus, c(a - b) = mk, for some $k \in \mathbb{Z}$. Since, (c,m) = d, $c = dk_1$ and $m = dk_2$, for some $k_1, k_2 \in \mathbb{Z}$. Thus, $dk_1(a - b) = dk_2$ or $k_2 \mid a - b$ as $gcd(k_1, k_2) = 1$.

Thus, $a \equiv b \pmod{k_2 = \frac{m}{d}}$.

Proof of Part 8, 9 and 10 are left for the readers.

Definition 3. Let $m \in \mathbb{N}$ be a given. For each $a \in \mathbb{Z}$, the **residue class** (or the congruence class or equivalence class) of a **modulo** m, denoted [a] or $[a]_m$, is defined as

 $[a] = \{x \in \mathbb{Z} | x \equiv a \pmod{m}\}.$

Thus, the set $\{[0], [1], [2], \dots, [m-1]\}$, denoted \mathbb{Z}_m , has some nice properties.

Theorem 4. Let $p(x) = \sum_{k=0}^{m} c_k x^k$ be a polynomial function of x with integral coefficients c_k . If $a \equiv b \pmod{n}$, then $p(a) \equiv p(b) \pmod{n}$.

Proof. Since, $a \equiv b \pmod{n}$, we have seen that $a^k \equiv b^k \pmod{n}$ and hence, $c_k a^k \equiv c_k b^k \pmod{n}$, for k = 0, 1, 2, ..., m. Adding these m + 1 congruences, we get

$$p(a) = \sum_{k=0}^{m} c_k a^k \equiv \sum_{k=0}^{m} c_k b^k = p(b) \pmod{n}.$$

If p(x) is a polynomial with integral coefficients, we say that *a* is a solution of the congruence $p(x) \equiv 0 \pmod{n}$ if $p(a) \equiv 0 \pmod{n}$.

Corollary 5. If a is a solution of $p(x) \equiv 0 \pmod{n}$ and $a \equiv b \pmod{n}$, then b is also a solution of $p(x) \equiv 0 \pmod{n}$.

Theorem 6. Let $M = a_m 10^m + a_{m-1} 10^{m-1} + \dots + 10a_1 + a_0$ be the decimal expansion of the positive integer M, $0 \le a_k < 10$, and let $S = a_0 + a_1 + \cdots + a_m$. Then, 9|M if and only if 9|S.

Proof. Let $p(x) = \sum_{k=0}^{m} a_k x^k$. Then p(10) = M and p(1) = S. But, $10 \equiv 1 \pmod{9}$ and hence $p(10) \equiv p(1) \pmod{9}$. Thus, we have $M \equiv S \pmod{9}$.

Theorem 7. Let $M = a_m 10^m + a_{m-1} 10^{m-1} + \dots + 10a_1 + a_0$ be the decimal expansion of the positive *integer M*, $0 \le a_k < 10$, and let $T = a_0 - a_1 + \dots + (-1)^m a_m$. Then, 11|M if and only if 11|T.

Proof. Let $p(x) = \sum_{k=0}^{m} a_k x^k$. Then p(10) = M and p(-1) = T. As $10 \equiv -1 \pmod{11}$, we get $p(10) \equiv p(-1) \pmod{11}$ and hence, $M \equiv T \pmod{11}$.

Fermat's Little Theorem

It is easy to see that

Part's Little Theorem
asy to see that

$$1^4 \equiv 1 \pmod{5}; 2^4 \equiv 1 \pmod{5}; 3^4 \equiv 1 \pmod{5}; 4^4 \equiv 1 \pmod{5}$$

 $5^4 \equiv 0 \pmod{5}$
 $6^4 \equiv 1 \pmod{5}; 7^4 \equiv 1 \pmod{5}; 8^4 \equiv 1 \pmod{5}; 9^4 \equiv 1 \pmod{5}$
 $10^4 \equiv 0 \pmod{5}$

Theorem 8. [Fermat's Little Theorem] Let p be a prime and suppose that $p \nmid a$. Then $a^{p-1} \equiv 1$ $(\mod p).$

Proof. We begin by considering the first p-1 positive multiples of a. That is, consider the integers

$$a, 2a, 3a, \ldots, (p-1)a.$$

• None of these numbers is congruent to another modulo *p*.

Let $ra \equiv sa \pmod{p}$ for $1 \leq r < s \leq p-1$. As $p \nmid a$, a can be canceled to give $r \equiv s \pmod{p}$, which is impossible as 0 < s - r < p.

• Similarly, it is easy to check that none of these numbers is congruent to zero modulo p.

Hence, $\{a \pmod{p}, 2a \pmod{p}, \dots, (p-1)a \pmod{p}\} = \{1, 2, \dots, p-1\}$. Therefore,

$$a \cdot 2a \cdots (p-1)a \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}$$
.

Or equivalently,

$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}.$$

Since, gcd(p, (p-1)!) = 1, using Theorem 2.thm:procon:7, we have $a^{p-1} \equiv 1 \pmod{p}$.

Corollary 9. If p is prime, then $a^p \equiv a \pmod{p}$ for any integer a.

Proof. If p|a, then $p|a^p - a$ and hence the result is true. If $p \nmid a$, then using theorem 8, $a^{p-1} \equiv 1 \pmod{p}$. Now, multiplying both sides by a, we get $a^p \equiv a \pmod{p}$.

Alternate proof: The result is clearly true for p = 2 as both a and a^2 have the same parity. Let p be an odd prime, then a^p and a have same sign. Thus, it is sufficient to prove the result for positive integers. So, let us fix a prime p and prove the result using induction on a. If a = 1, then clearly $a^p \equiv a \pmod{p}$ holds.

Assume the result holds for *a*, *i.e.*, $a^p \equiv a \pmod{p}$. We need to prove that $(a+1)^p \equiv (a+1) \pmod{p}$.

We first observe that since p is a prime $p \mid {p \choose k} = \frac{p!}{k!(p-k)!}$ for k = 1, 2, ..., p-1. Hence, $(a+1)^p \equiv a^p + 1 \pmod{p}$. But, by induction hypothesis, $a^p \equiv a \pmod{p}$. Hence, we get $(a+1)^p \equiv a^p + 1 \equiv (a+1) \pmod{p}$.