Number Theory and Graph Theory

Chapter 1

Introduction and Divisibility

By

duate Courses

A. Satyanarayana Reddy

^DDepartment of Mathematics

Shiv Nadar University

Uttar Pradesh, India

E-mail: satya8118@gmail.com

Module-2: Properties of division of integers and Division algorithm

Objectives

- Division and its properties.
- Division Algorithm and its applications.

1 Division and its Properties

Definition 1.1. Let $a, b \in \mathbb{Z}$ and $a \neq 0$. Then a is said to divide b if there is an integer k such that b = ak. We denote it by $a \mid b$ and $a \nmid b$ means that a does not divide b.

Remark 1.2. $a \mid b$ is a statement, for example 2|6 is true, and 6|2 is false. Where as $\frac{6}{2}$ is a number equal to 3.

Following properties are easy to verify, hence we state them without proof.

Theorem 1.3 (Few properties of division). *Let a, b, and d be integers. Then, the following statements hold:*

Reflexive property: *a* | *a* (every integer divides itself).

Transitivity property: $d \mid a \text{ and } a \mid b \implies d \mid b$.

Linearity Property: $d \mid a \text{ and } d \mid b \implies d \mid an+bm \text{ for all } n \text{ and } m$.

That is if d|a, b, then d divides every integer linear combination of a and b.

Cancellation Property: *ad* | *an and* $a \neq 0 \Longrightarrow d \mid n$.

Multiplication Property: $d \mid n \Longrightarrow ad \mid an$.

1 and -1 divides every integer: $1 \mid n, -1 \mid n \forall n \in \mathbb{Z}$.

1 and -1 are divisible by 1 and -1 only: $n \mid 1 \Longrightarrow n = \pm 1$.

Another equivalent way of stating the above two properties is: 1 and -1 are the only invertible elements in \mathbb{Z} .

Every number divides zero: $d \mid 0 \quad \forall d \in \mathbb{Z}$.

Comparison Property: *If d and n are positive and* $d \mid n$ *then* $d \leq n$.

2 Division Algorithm

One of the important application of WOP is the division algorithm.

Suppose an integer a is divided by an integer $b \neq 0$. Then we get a unique quotient q and a unique remainder r, where the remainder satisfies the condition $0 \le r < |b|$. Here a is the dividend and b the divisor.

This is just saying another way that either a is multiple of b or a lies between two multiples of b.

$$qb$$
 $(q+1)b$

This is formally stated as follows.

Theorem 2.1 (Division Algorithm). Let $a \in \mathbb{Z}$, $b \in \mathbb{Z} \setminus \{0\}$. Then there exists unique $q, r \in \mathbb{Z}$ such that a = bq + r, where $0 \le r < |b|$.

Proof. Existence: First we prove the result when *b* is positive *i*, *e*., $b \ge 1$.

Consider the set S = {a - bn | n ∈ Z}. That is S = {a, a ± b, a ± 2b, a ± 3b,...,}. It is clear that S contains infinitely many integers. Further, when n = -|a| we have a - b(-|a|) = a + b|a| ≥ a + |a| ≥ 0. Thus, S contains non negative integers.

- Let $S' = S \cap (\mathbb{N} \cup \{0\})$. Then, by the Well-ordering principle S' has a least element, say *r*. Now we have $r \in S' \subseteq S$, hence there exists a $q \in \mathbb{Z}$ such that r = a - bq or a = bq + r. And also from definition of *S*', we have $0 \le r$.
- Now we will show that r < b. Suppose $r \ge b$, then $0 \le r b = a bq b = a b(q+1) \in a$ S' and r - b < r (as $b \ge 1$) which is a contradiction as r is the least element in S'.

Uniqueness: Let $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ such that $a = bq_1 + r_1 = bq_2 + r_2$, where $0 \le r_1 < b$ and $0 \le c_1 < b$ $r_2 < b$.

claim: $r_1 = r_2$ **and** $q_1 = q_2$

Suppose $r_1 \ge r_2$. Then

$$r_1-r_2\in\{0\cdot b,1\cdot b,2\cdot b,\ldots\},$$

10

Courses as $r_1 - r_2 = b(q_2 - q_1)$. Thus, b divides $r_1 - r_2$ and $0 \le r_1 - r_2 \le r_1 < b$. Which is possible PostGra only if $r_1 - r_2 = 0$ and hence, $q_1 - q_2 = 0$.

If b is negative, then -b is positive, hence there exists $q, r \in \mathbb{Z}$ such that a = (-b)q + r =b(-q)+r, where $0 \le r < -b$.

Few applications of Division Algorithm 2.1

- **b=2:** Let *a* be any integer. Then, by division algorithm a = bq + r where r = 0 or r = 1. That is, the only possible remainders are r = 0 or r = 1. When r = 0, we have a = 2q, called an even integer. When r = 1, a = 2q + 1, called an odd integer.
- **b=3:** Then, the possible remainders are r = 0 or 1 or 2. Consequently, every integer can be expressed as 3q or 3q+1 or 3q+2. In other words, $\mathbb{Z} = \{3q | q \in \mathbb{Z}\} \cup \{3q+1 | q \in \mathbb{Z}\} \cup$ $\{3q+2|q\in\mathbb{Z}\}.$

b=4: We have $\mathbb{Z} = \{4q | q \in \mathbb{Z}\} \cup \{4q+1 | q \in \mathbb{Z}\} \cup \{4q+2 | q \in \mathbb{Z}\} \cup \{4q+3 | q \in \mathbb{Z}\}.$

The advantage of division algorithm is that it allows us to prove assertions about all the integers by considering only a finite number of cases. For example, Let *a* be any integer. Then a = 2q or a = 2q + 1 so that $a^2 = 4k$ or $a^2 = 4k + 1$. In other words, square of an integer can not be of the form 4k + 2 or 4k + 3.

Similarly, one can prove that a square odd integer must have the form 8k + 1, for some integer k.

Proof. Note that every odd integer has one of the forms 8k + 1 or 8k + 3 or 8k + 5 or 8k + 7. In each case, it can be easily verified that their square has the form 8q + 1.

Problem 2.2. 1. No integer in the following sequence is a perfect square {11,111,1111,1111,...}.

Proof. We already know that the square of any integer is either of the form 4r or 4r + 1. An arbitrary number of the form 1111...1111 = 1111...1108 + 3 and 4 divides 1111...1108. Thus, all the numbers are of the form 4k + 3. Hence, they cannot be perfect squares.

2. Show that each term of the sequence 16,1156,111556,11115556,... is a perfect square.

Proof. Let t_n be its n^{th} term. Then $t_n - 1 = R_n 10^n + 5R_n = R_n (10^n + 5)$, where $R_k = \frac{10^k - 1}{9}$. Note that R_k is a positive integer for all $k \in \mathbb{N}$.

$$t_n = R_n 10^n + 5R_n + 1 = R_n (9R_n + 1) + 5R_n + 1$$
$$= 9R_n^2 + 6R_n + 1 = (3R_n + 1)^2$$

5

п	-	-	-	
L				
L				

3. For $n \ge 1$. Show that $\frac{n(n+1)(2n+1)}{6}$ is an integer.

Proof. If n=6k, then n(n+1)(2n+1) = 6k(6k+1)(12k+1). If n=6k+1, then n(n+1)(2n+1) = (6k+1)(6k+2)(12k+3) = 6(6k+1)(3k+1)(4k+1). If n=6k+2, then n(n+1)(2n+1) = (6k+2)(6k+3)(12k+5) = 6(3k+1)(2k+1)(12k+5). If n=6k+3, then n(n+1)(2n+1) = (6k+3)(6k+4)(12k+7) = 6(2k+1)(3k+2)(12k+7). If n=6k+4, then n(n+1)(2n+1) = (6k+4)(6k+5)(12k+9) = 6(3k+2)(6k+5)(4k+3). If n=6k+5, then n(n+1)(2n+1) = 6(6k+5)(k+1)(12k+11).

Theorem 2.3 (Pigeonhole Principle). If *m* pigeons are assigned to *n* pigeonholes, where m > n, then at least two pigeons must occupy the same pigeonhole.

Proof. (by contradiction) Suppose the given conclusion is false, that is, no two pigeons occupy the same pigeonhole. Then every pigeon must occupy a distinct pigeonhole, so $n \ge m$, which is a contradiction. Thus, two or more pigeons must occupy the same pigeonhole.

Example 2.4. Let *n* be an integer ≥ 2 . Suppose n + 1 integers are selected randomly. Prove that the difference of two of them is divisible by *n*.

Proof. Let *q* be the quotient and *r* the remainder when an integer *a* is divided by *n*. Then, by division algorithm, a = nq + r, where $0 \le r < n$. The n + 1 integers yield n + 1 remainders (pigeons), but there are only *n* possible remainders (pigeonholes). Therefore, by the pigeonhole principle, two of the remainders must be equal.

Let *x* and *y* be the corresponding integers. Then $x = nq_1 + r$ and $y = nq_2 + r$ for some quotients q_1 and q_2 . Therefore, $x - y = (nq_1 + r) - (nq_2 + r) = n(q_1 - q_2)$. Thus, x - y is divisible by *n*. \Box