
OPERATIONS RESEARCH

Chapter 8

Dynamic Programming

Prof. Bibhas C. Giri

Department of Mathematics

Jadavpur University

Kolkata, India

Email: bcgiri.jumath@gmail.com



MODULE - 1: Basic Concept and
Terminology, and Dynamic Programming
Models I and II

1.0
Introduction

Consider a company that has to decide on the production plan of an item for the next

three months so as to meet the demands in different months at minimum cost. The

different months for which the production is to be decided constitute the stages. So

it is a multi-stage problem. For such a problem, decisions are made sequentially over

several periods using a technique called Dynamic Programming (DP) technique. One

thing common to all models in this category is that current decisions influence both

present and future periods.

The dynamic programming approach divides the problem into several sub- prob-

lems or stages and then these sub-problems are solved sequentially until the initial

problem is finally solved. The common characteristic of all dynamic programming

models is expressing the decision problem by means of recursive formulation.

1.1
Terminology

Terminologies which are commonly used in dynamic programming are given below:

Stage: The point at which a decision is made is known as a stage. The end of a stage

marks the beginning of the immediate succeeding stage. For instance, in the salesmen

allocation problem, each territory represents a stage; in the shortest route problem,

each city represents a stage.

2



State: The variable that links two stages in a multistage decision problem is called a

state variable. At any stage, the values that state variables can take describe the status

of the problem. These values are referred to as states. For example, in the shortest

route problem, a city is referred to as state variable.

Principle of optimality: The principle of optimality states that the optimal decision

from any state in a stage to the end, is independent of how one actually arrives at that

state.

Optimal policy: A policy which optimizes the value of an objective function is called

an optimal policy.

Bellman’s principle of optimality : It states that “an optimal policy (a sequence of

decisions) has the property that whatever the initial state and decisions are, the re-

maining decisions must constitute an optimal policy with regard to the state resulting

from the first decision.”

Return function : At each stage, a decision is made which can affect the state of the

system at the next stage and help in arriving at the optimal solution at the current

stage. Every decision has its merit which can be represented in an algebraic equation

form. This equation is called a return function.

1.2 Characteristics of Dynamic Programming

The basic features which characterize the dynamic programming problem are as fol-

lows:

(a) The problem can be subdivided into stages with a policy decision required at each

stage. A stage is a device to sequence the decisions. That is, it decomposes a

problem into sub-problems such that an optimal solution to the problem can be

obtained from the optimal solutions to the sub-problems.

(b) Every stage consists of a number of states associated with it.

(c) Decision at each stage converts the current stage into state associated with the next

stage.



(d) The state of the system at a stage is described by a set of variables, called state

variables.

(e) When the current state is known, an optimal policy for the remaining stages is

independent of the policy of the previous ones.

(f) To identify the optimal policy for each state of the system, a recursive equation is

formulated with n stages remaining, given the optimal policy for each state with

(n− 1) stages left.

(g) Using recursive equation approach each time, the solution procedure moves back-

ward stage by stage for obtaining the optimum policy of each state for that partic-

ular stage, till it attains the optimum policy beginning at the initial stage.

1.3
Dynamic Programming Algorithm

The computational procedure for solving a problem by dynamic programming ap-

proach can be summarized in the following steps:

Step 1. Decompose (or divide) the given problem into a number of smaller sub-problems

(or stages). Identify the state variables at each stage and write down the trans-

formation function as a function of the state variables and decision variables

at the next stage.

Step 2. Write down a general recursive relationship for computing the optimal policy.

Decide whether forward or backward method is to be followed to solve the

problem.

Step 3. Construct appropriate stages to show the required values of the return func-

tion at each stage.

Step 4. Determine the overall optimal policy or decisions and its value at each stage.

There may be more than one such optimal policy.



Note:

1. Generally the solution of a recursive equation involves two types of computations,

according as the system is continuous or discrete. In the first case, the optimal decision

at each stage is obtained by using the usual classical methods of optimization. In

second case, a tabular computational scheme is followed.

2. If the dynamic programming problem is solved by using the recursive equation start-

ing from the first through the last stage, i.e., obtained the sequence f1→ f2→ ...→ fN ,

the computation involved is called the forward computational procedure. If the recur-

sive equation is formulated in a different way so as to obtain the sequence fN →
fN−1→ ...→ f1 then the computation is known as the backward computational pro-

cedure.

1.4
Dynamic Programming Model I

Single additive constraint and multiplicatively separable return

Consider the problem:

Maximize z =
n∏

j=1

fj(yj)

subject to
n∑

j=1

ajyj = b, yj ≥ 0, aj ≥ 0.

We introduce the state variables sj =
∑
ajyj = b, sj−1 = sj − ajyj , j = 2,3, · · · ,n.

Let Fj(sj) = max
y1,y2,··· ,yj

j∏
1
fj(yj). Then the general recursion formula is given by

Fj(sj) = max
yj

[
fj(yj)Fj−1(sj−1)

]
, j = n,n− 1, · · · ,2 and F1(s1) = f1(y1).

Example 1.1: Maximize y1y2y3 subject to y1 + y2 + y3 = 5; y1, y2, y3 ≥ 0

Solution: We introduce the state variables s3 = y1 + y2 + y3, s2 = s3 − y3 = y1 + y2, s1 =

s2 − y2 = y1. Let Fj(sj) = max
y1,y2,···yj

j∏
1
yj . Then

F3(s3) = max
y3

[y3F2(s2)]

F2(s2) = max
y2

[y2F1(s1)]

F1(s1) = s2 − y2.



Hence, F2(s2) = max
y2

[y2(s2 − y2)].

We use differential calculus to maximize y2(s2 − y2) and get the optimal value of y2 as

y2 = s2/2.

Then, using Bellman’s principle of optimality, we have

F3(s3) = max
y3

[y3s
2
2/4] = max

y3
[y3(s3 − y3)2/4]

Using differential calculus again, we find that y3 = s3/3 = 5/3 maximizes y3(s3−y3)2/4.
This gives s2 = y1 + y2 = 10/3. Thus we obtain y2 = s2/2 = 5/3, and y1 = 5/3. Hence the

maximum value of y1y2y3 is 125/27.

1.5
Dynamic Programming Model II

Single additive constraint and additively separable return

Consider the problem in which the objective or return function z is an additively sep-

arable function of n variables yj and fj(yj) is a function of yj . Find yj , 1 ≤ j ≤ n, which

minimize z =
n∑

j=1
fj(yj), subject to the constraint

n∑
j=1

ajyj ≥ b, where aj(≥ 0) and b(> 0)

are real numbers, yj ≥ 0, j = 1,2, · · · ,n.

This is an n-stage problem where suffix j indicates the stage. Since values of yj ’s

are to be decided, yj ’s are called decision variables. The return at the jth stage is the

function fj(yj). Thus, each decision yj is associated with a return fj(yj).

We introduce state variables s1, s2, · · · , sn such that

sn = a1y1 + a2y2 + · · ·+ anyn ≥ b

sn−1 = a1y1 + a2y2 + · · ·+ an−1yn−1 = sn − anyn
sn−2 = a1y1 + a2y2 + · · ·+ an−2yn−2 = sn−1 − an−1yn−1
· · · · · · · · · · · · · · · · · · · · · · · ·

s1 = a1y1 = s2 − a2y2

Let sj−1 = Tj(sj , yj), 2 ≤ j ≤ n, where Tj is the stage transformation function.

Let Fn(sn) denote the minimum value of z for any feasible value of sn, where sn being

the function of all decision variables. Then

Fn(sn) = min
y1,y2,··· ,yn

[f1(y1) + f2(y2) + · · ·+ fn(yn)], sn ≥ b.

If we choose a particular value of yn and minimize z over the remaining n−1 variables

then we have



Fn(sn) = fn(yn) + min
y1,y2,··· ,yn−1

n−1∑
j=1

fj(yj)

 = fn(yn) +Fn−1(sn−1)

Therefore, the minimum over all yn for any feasible sn is given by

Fn(sn) = min
yn

[fn(yn) +Fn−1(sn−1)] .

If the value of Fn−1(sn−1) is known for all yn, then the function which is to beminimized

involves only a single variable yn. The recursion formula is

Fj(sj) = min
yj

[fj(yj) +Fj−1(sj−1)], 2 ≤ j ≤ n

and F1(s1) = f1(y1).

Now, starting with F1(s1) we recursively optimize to obtain F2(s2),F3(s3), · · · and finally

we obtain Fn(sn) for feasible sn. Each time optimization is done over a single variable

only.

Example 1.2: Minimize z = y21 + y22 + y23 , subject to y1 + y2 + y3 ≥ 15, and y1, y2, y3 ≥ 0.

Solution: Here the decision variables are y1, y2 and y3. We define the state variables

s1, s2 and s3 such that

s3 = y1 + y2 + y3 ≥ 15

s2 = y1 + y2 = s3 − y3
s1 = y1 = s2 − y2

Also, we define Fj(sj) = minyj [fj(yj) + Fj−1(sj−1)] for j = 2,3 and F1(s1) = f1(y1). Then

we have

F3(s3) = min
y3

[y23 +F2(s2)]

F2(s2) = min
y3

[y22 +F1(s1)]

F1(s1) = y21 = (s2 − y2)2

Thus we have F2(s2) = min
y2

[y22 + (s2 − y2)2]

Using calculus, we see that y22+(s2−y2)2 is minimum for y2 = s2/2. Hence F2(s2) = s22/2.

Now, F3(s3) = min
y3

[y23 +F2(s2)] = min
y3

[y23 + (s3 − y3)2/2], using Bellman’s principle.

Again, using calculus, we see that y23 + (s3 − y3)2/2 is minimum for y3 = s3/3.



Hence, F3(s3) = s23/3, s3 ≥ 15.

Since F3(s3) is minimum for s3 = 15, therefore, the minimum value of y21 +y
2
2 +y

2
3 is 75,

where y1 = y2 = y3 = 5.

Example 1.3: Use Dynamic Programming to show that

z = p1 logp1 + p2 logp2 + ...+ pn logpn

subject to p1 + p2 + ...+ pn = 1 and pj ≥ 0, j = 1,2, · · · ,n

is a minimum when p1 = p2 = ... = pn = 1/n.

Solution: The problem here is to divide unity into n parts so as to minimize the quan-

tity
∑

i pi logpi .

Let fn(1) denote the minimum attainable sum
∑

i pi logpi .

For n = 1 (stage 1), we have

f1(1) = p1 logp1 = 1log1 as p1 = 1.

For n = 2, the unity is divided into two parts p1 and p2, such that p1 + p2 = 1.

If p1 = x and p2 = 1− x, then we have

f2(1) = min{p1 logp1 + p2 logp2}

= min
0<x≤1

{x logx+ (1− x) log(1− x)}

= min
0<x≤1

{x logx+ f1(1− x)}

In general, for an n-stage problem, the recursive equation is

fn(1) = min{p1 logp1 + p2 logp2 + ...+ pn logpn}

= min
0<x≤1

{x logx+ fn−1(1− x)}

We now solve this recursive equation.

For n = 2 (stage 2), the function x logx + (1− x) log(1− x) attains its minimum value at

x = 1/2 satisfying the condition 0 < x ≤ 1. Thus,

f2(1) =
1
2
log

1
2
+ (1− 1

2
)log(1− 1

2
) = 2(

1
2
log

1
2
).

Similarly, for stage 3, we have

f3(1) = min
0<x≤1

{x logx+ f2(1− x)}

= min
0<x≤1

{x logx+2(
1− x
2

)log(
1− x
2

)}



Now, since the minimum value of x logx+2(1−x2 ) log(1−x2 ) is attained at x = 1/3 satisfy-

ing 0 < x ≤ 1, we have

f3(1) =
1
3
log

1
3
+2(

1
3
log

1
3
) = 3(

1
3
log

1
3
).

Therefore, the optimal policy is p1 = p2 = p3 = 1/3.

In general, for n-stage problem, we assume that the optimal policy is

p1 = p2 = ... = pn = 1/n and f 0
n (1) = n

{1
n
log

1
n

}
.

This can be shown easily by mathematical induction. For n = m + 1, the recursive

equation is

fm+1(1) = min
0<x≤1

{x logx+ fm(1− x)}

= min
0<x≤1

[
x logx+m

{1− x
m

log
(1− x

m

)}]
=

1
m+1

log
1

m+1
+m

{ 1
m+1

log
1

m+1

}
= (m+1)

{ 1
m+1

log
1

m+1

}
,

since minimum of x logx+m(1−xm log 1−x
m ) is attained at x = 1

m+1 .

Hence, the required optimal policy is(1
n
,
1
n
, ...,

1
n

)
with f 0

n (1) = n
(1
n
log

1
n

)
.


