

e-PG Pathshala
Subject: Computer Science
Paper: Embedded System

 Module: RTOS: Scheduling policies-2
Module No: CS/ES/26

Quadrant 1 – e-text

In this lecture concepts of priority based scheduling and its types will be discussed. Then
EDF and RMS scheduling algorithms will be explained in detail in this lecture. Inter process
communication will also be discussed in detail.

1.1 Priorities in scheduling

In priority scheduling, an OS kernel determines which process is to be executed next.

For each task a numerical priority is assigned. The kernel can simply look at the

processes and their priorities. It sees which one actually wants to execute and selects

the highest priority process that is ready to run.This mechanism is flexible and fast.

1.2. Priority-driven scheduling

Priority-driven scheduling is easy to implement. It does not require the prior information

on the release times and execution times of the jobs. Each process has a fixed priority

that does not vary during the course of execution.The ready process with the highest

priority is selected for execution. A process continues execution until it completes or it is

pre-empted by a higher-priority process. Figure 1 shows an example for priority process.

Consider there are three processes P1 , P2 and P3 with the execution time of 10,20 and

30 time units respectively. In this example, P1 is the highest priority; P2 is having the

middle priority and P3 is the lower priority process in order.

 Figure 1. Priority of Processes

An example of Priority scheduling for this set of processes is shown in Figure 2. Assume

that P2 is ready to run. When the system is started, P1 is released at time 15, and P3 is

released at time 18. P2 is the only ready process, so it is selected for execution. At time

15, P1 becomes ready; it pre-empts P2 and begins execution since it has a higher

priority. Since P1 is the highest-priority process in the system, it is guaranteed to execute

until it finishes. P3’s data arrives at time 18, but it cannot pre-empt P1. Even when P1

finishes, P3 is not allowed to run. P2 is still ready and has higher priority than P3. P3

starts only when both the process P1 and P2 are finished. Priority inversion problem may

occur if priority scheduling is used.

 Figure 2. Priority Scheduling

1.3 Priority inversion problem

Scheduling the processes without considering the resources those processes require,

can cause priority inversion, in which a low-priority process blocks execution of a higher

priority process by keeping hold of its resources. Priority inversion problem occurs

commonly in real time kernels. Example : Consider task 1 has a higher priority than task

2 and task 2 has a higher priority than task 3. Assume task 1 and task 3 share a

resource through mutual exclusion. While task 3 is executing and holding the resource if

task 2 is ready, it is scheduled because it has higher priority. At this time, even though

task 1 has higher priority it cannot execute because the blocked task 3 is holding the

shared resource. That is, a lower priority process is blocking a higher priority process.

This is the priority inversion problem.

1.3.1 A Solution to priority inversion problem
We can correct the problem by raising the priority of task 3, just for the time when it

accesses the shared resource. After that, the task 3 returns to its original priority. If task 3

finishes the access before being preempted by task 1 then it incurs overhead for nothing. A

better solution to priority inversion problem is priority inheritance.

Priority Inheritance

It automatically changes the task priority when needed. That is, the task that holds the

resource will inherit the priority of the task that waits for that resource until it releases the

resources. Once the priorities are assigned, the OS takes care of the rest by choosing the

highest-priority ready process.

2. Assigning Task priorities

There are two major ways to assign priorities as explained below.

● Static priorities- The priorities of the task that do not change during

execution are called as static priorities. Once the Priority of the task is

assigned, its value is retained till the end or completion of task.
 Example: Rate Monotonic Scheduling (RMS)

● Dynamic priorities- The priorities of the task that are dynamically changing

during the execution are called as dynamic priorities. These priorities will

change at each and every instant of time based on the current scenario.
 Example: Earliest Deadline First (EDF)

 Let us discuss the RMS and EDF scheduling in detail.

2.1 Rate-Monotonic Scheduling (RMS)

RMS is one of the first scheduling policies developed for real-time systems and is still

widely used. It is a static scheduling policy where only the fixed priorities are sufficient to

efficiently schedule the processes in many situations.

Theory:

The theory underlying RMS is known as rate-monotonic analysis(RMA). This theory

summarized below uses a relatively simple model of the system.

● All processes run periodically on a single CPU.

● Context switching time is ignored.

● There are no data dependencies between processes.

● The execution time for a process is constant.

● All deadlines are at the ends of their periods.

● The highest-priority ready process is always selected for execution.

The major result of RMA is that a relatively simple scheduling policy is optimal under

certain conditions. Priorities are assigned by rank order of period, i.e. process with the

shortest period is assigned the highest priority. It provides the highest CPU utilization

while ensuring that all processes meet their deadlines.

2.1.1 Example of Rate Monotonic Scheduling

Suppose P1 has the highest priority, P2 the middle priority, and P3 the lowest priority. Then

all periods start at time zero, as per RMS execution. This is explained in Figure 4 shown

below.

 Figure 4: Rate Monotonic Scheduling

All three periods starts at time zero. P1’s data arrives first. Since P1 is the highest-

priority process, it can start to execute immediately. After one-time unit, P1 finishes and

goes out of the ready state until the start of its next period. At time 1, P2 starts executing

as the highest-priority ready process. At time 3, P2 finishes and P3 starts executing. P1’s

next iteration starts at time 4, at which point it interrupts P3. P3 gets one more time unit

of execution between the second iterations of P1 and P2, but P3 does not get to finish

until after the third iteration of P1.

Consider a different set of execution times for the three processes, keeping the same

deadlines as shown in figure 5. Each process alone has an execution time significantly

less than its period. The combinations of processes can require more than 100% of the

available CPU cycles. For example, during one 12 time-unit interval, we must execute

P1 three times, requiring 6 units of CPU time; P2 twice, costing 6 units of CPU time; and

P3 one time, requiring 3 units of CPU time. The total of 6 + 6 + 3 = 15 units of CPU time

which is more than the 12 time units available, clearly exceeding the available CPU

capacity.

 Figure 5: RMS with different execution times

2.1.2 RM – Utilization Bound:

Real-time system is schedulable under RM if

∑Ui ≤ n (21/n-1), where U is the utilization and n refers to the total number of tasks.

Figure 6 : Calculation of RM Utilization Bounds.

Example: Consider there are three tasks T1(1,4), T2(1,5), T3(1,10). The calculation of

RM Utilization is as follows:

 . The task is represented by T (e,p) where p is the inter release time and e is the

maximum execution time.

The utilization is given by U = e/p.

 ∑Ui = 1/4 + 1/5 + 1/10= 0.55

Real-time system is schedulable under RM if

∑Ui <= n(21/n -1), where n is the number of task.

3 (21/3-1) ≈ 0.78

 Thus, {T1, T2, T3} is schedulable under RM. Example of RM utilization bound is shown

in Figure 6.

Deadline miss with RM

Consider scheduling the following task set T1 = (1,4) , T2 = (2,6) and T4 = (3,8) (figure

7).

 Utilization bound (U) = ¼ + 2/6 + ⅜ = 23/24.

The utilization is greater than the bound. Hence there is a deadline miss. Observe that

at time 6, even if the deadline of task T3 is very close, the scheduler decides to

schedule task T2. This is the main reason why T3 misses its deadline.

 Figure 7 : Deadline miss with RM

EDF Scheduling is preferred to avoid this kind of situation. Let us discuss EDF in detail.

2.2 Earliest-Deadline-First(EDF) Scheduling

An important class of scheduling algorithms is the class of dynamic priority algorithms.

In dynamic priority algorithms, the priority of a task can change during its execution

based on the initiation times. Fixed priority algorithms are a subclass of the more general

class of dynamic priority algorithms, the priority of a task does not change.The most

important (and analyzed) dynamic priority algorithm is Earliest Deadline First (EDF). The

priority of a job (instance) is inversely proportional to its absolute deadline. In other

words, the highest priority job is the one with the earliest deadline. If two tasks have the

same absolute deadlines, chose one of the two at random (ties can be broken

arbitrarily).The priority is dynamic since it changes for different jobs of the same task.It

achieves higher CPU utilizations than RMS. The highest-priority process is the one

whose deadline is nearest in time, and the lowest priority process is the one whose

deadline is farthest away. Priorities must be recalculated at the completion of every

process. Final procedure is same as RM.

2.2.1 Example 1: Scheduling with EDF

Now we schedule the same task (shown in Fig. 7) with EDF.

T1 = (1,4) , T2 = (2,6) and T3 = (3,8)

U = ¼ + 2/6 + ⅜ =23/24

Again the Utilization is very high. However, there is no deadline miss in the hyperperiod.

(The hyperperiod is the smallest interval of time after which the periodic patterns of all

the tasks is repeated).

Observe that at time 6, the problem does not appear, as the earliest deadline job (the

one of T3) is executed as shown in figure 8. It demonstrates how the deadline miss is

avoided in EDF scheduling in the above example.

 Figure 8. EDF Scheduling with no deadline miss

2.2.2. Example 2

Optimal dynamic priority scheduling. A task with a shorter deadline has a higher

priority, i.e., it executes a job with the earliest deadline. It is an Optimal scheduling

algorithm. If there is a schedule for a set of real-time tasks, EDF can schedule it. This is

explained in Figure 9 shown below. It demonstrates how three tasks T1(1,4) ,T2(2,5) and

T3(2,7) scheduled for 15 periods efficiently using earliest deadline first scheduling. There

is no deadline miss and it effectively utilizes the time periods.

 Figure 9 : Earliest Deadline First Scheduling

2.2.3 EDF-Overload conditions

A disadvantage of EDF is that Domino effect occurs during overload conditions. This is

explained below in the figure 10 with the example: T1(3,4), T2(3,5), T3(3,6), T4(3,7). The

hyperperiod given is 7, but actually 12 (3+3+3+3) time slots are needed to complete all

processes at least once. Hence deadline miss occurs. This overload condition is known

as the domino effect. In Figure 10, first the three tasks T2,T3 and T4 are having

deadline miss. If we schedule T3 after T1 or T4 after T1, only 2 tasks will get deadline

miss. When compared to the first schedule, these two are better schedules even though

they have deadline miss.

 Figure 10 : EDF overloading

2.2.4 Example 3

In EDF, priorities are assigned in order of deadline. The highest priority process has

deadline nearest in time and the lowest priority process is having deadline which is farthest

away. The priorities are recalculated during every completion of process and the highest

priority ready process is chosen for execution. This is another example to demonstrate EDF

Scheduling for 60 time slots, which is shown in Table 1.

Table 1. Hyper Period calculation using EDF algorithm

2.3 RMS vs. EDF

The following are some of the differences between RMS and EDF priority scheduling

algorithms.

Rate Monotonic

● Simpler implementation, even in systems without explicit support for timing

constraints (periods, deadlines).
● Predictability for the highest priority tasks.

EDF

• Full processor utilization.

• Misbehavior during overload conditions.

3. Interprocess Communication Mechanisms

Processes need communication, this is done by using Inter-process communication.This

mechanism is provided by the operating system. The processes can communicate in two

ways. They are blocking and non-blocking methods and are explained as follows.

Blocking: Process enters waiting state until it gets response for a communication it has

sent.

Non-blocking: Continues execution after sending communication.

Two major styles of Interprocess communications are shared memory and message

passing which are discussed in detail below.

Shared memory: Two components, such as a CPU and an I/O device, communicate

through a shared memory location. The software on the CPU is designed to know the

address of the shared location; the shared location is also loaded into the proper register

of the I/O device. This is shown in figure 11.

Figure 11 : Shared memory Communication

 If the CPU wants to send data to the device, it writes to the shared location.The I/O

device then reads the data from that location.

3.1 Message Passing:

Each communicating entity has its own message send/receive unit.The message is not

stored on the communications link, but rather at the senders/ receivers at the end points. In

contrast, shared memory communication can be seen as a memory block used as a

communication device, in which all the data are stored in the communication link/memory.

A message passing example is shown in Figure 12.

Figure 12 : Message Passing

3.2 Signalling

An UNIX inter-process communication is done through the signal. A signal is a one bit

output from a process for Inter Process Communication. It is generated by a process and

transmitted to another process by the OS. An advantage of using signal is that it uses

the shortest possible CPU time. It is the software equivalent of the flag at a register that

is set on a hardware interrupt.

4. Summary

In this module priority based scheduling is discussed. Then RMS and EDF priority based

scheduling algorithms are discussed along with their advantages and limitations. After

that Inter process communication is also discussed.

 5. References

1. Wayne Wolf, “Computers as Components: Principles of Embedded Computing

System Design”, 2008.

2. Insup Lee, “Real-Time Scheduling”, Lecture7-2005.

3. http://feanor.sssup.it/~lipari.

4. Buttazzo, “Rate monotonic vs. EDF: Judgement Day”, EMSOFT 2003.

5. Liu & Layland, “Scheduling algorithms for multiprogramming in a hard-real-time

environment”, Journal of ACM, 1973.

http://feanor.sssup.it/~lipari

