

e-PG Pathshala

Subject: Computer Science

Paper: Embedded System
Module: Interfacing External Devices using Embedded C

Module No: CS/ES/22

Quadrant 1 – e-text

In this lecture interfacing of external devices with 8051 will be discussed. The Interfacing of
external memory with 8051 will be discussed. The Embedded C program for the interfacing of
8051 with external devices will be discussed in detail with examples.

1. LCD

A liquid crystal display (LCD) is a flat panel display that uses the light modulating properties of
liquid crystals (LCs). LCD Modules can present textual information to user. LCD is used to
provide user interface for normal output as well as for debugging purpose.

1.1 LCD Interfacing

LCD modules are available in different configurations. Here, we will consider the 2x16 character
module available from Optrex to illustrate the interfacing with the microcontroller. The 2x16
character LCD module supports both 4-bit and 8-bit modes. These modes differ in how data is
sent to LCD. In 8-bit mode, to write a character, 8-bit ASCII data is sent through data lines D0-
D7 and data strobe is given through pin E of the LCD. But 4-bit mode uses only 4 data lines D4-
D7. In this mode, 8-bit ASCII data and command data are divided into two parts and sent
sequentially through the data lines. It is used in communication because, less pins will be used.
Therefore 4-bit mode is preferred than 8-bit even with speed difference. Figure 1 shown below
gives the details of interfacing 4-bit LCD to Microcontroller.

Figure 1 Interfacing of 4-bit LCD to Microcontroller

Pin Descriptions of LCD are described in Table 1 and Pin Positions for various LCDs are shown
in Figure 2.

Table 1. Pin Descriptions of LCD

Figure 2. Pin Positions for various LCDs from optrex.

1.2 LCD command codes

The LCD’s internal controller can accept several commands and modify the display accordingly.
These commands would be things like:

● Clear screen
● Return home
● Decrement/Increment cursor

After writing to the LCD, it takes some time for it to complete its internal operations. During this
time, it will not accept any new commands or data. We need to insert time delay between any
two commands or data sent to LCD. The LCD command codes are described in Table 2 shown
below.

Table 2. LCD command codes

1.3 Circuit diagram to Interface 4-bit LCD with 8051

The circuit diagram for interfacing 4-bit LCD with 8051 is shown in Figure 3 below.

Figure 3 Interfacing 4-bit LCD with 8051

Example 1 described below gives the details about how to write embedded C program for
interfacing of LCD to 8051.

Example 1

Write an 8051 C program to send letters ‘M’, ‘D’, and ‘E’ to the LCD using the busy flag method.
Port1 connected to LCD data pins D0-D7.
P2.0=RS , P2.1=R/W, P2.2=E pins.
Solution:

#include <reg51.h>
sfr ldata = 0x90; //P1=LCD data pins
sbit rs = P2^0;
sbit rw = P2^1;
sbit en = P2^2;
sbit busy = P1^7;

Void main()

{

lcdcmd(0x38);// 2 lines 5x7 matrix
lcdcmd(0x0E);//display on cursor blinking
lcdcmd(0x01);//clear display screen
lcdcmd(0x06);//increment cursor
lcdcmd(0x86); //line 1, position 6
lcddata(‘M’);
lcddata(‘D’);
lcddata(‘E’);

}

void lcdcmd(unsigned char value)

{

lcdready(); //check the LCD busy flag
ldata = value; //put the value on the pins port1
rs = 0; // for command rs=0
rw = 0;// r/w=0 for write
en = 1; //strobe the enable pin
MSDelay(1);
en = 0; // high low pulse to E
return;

}

void lcddata(unsigned char value)

{

lcdready(); //check the LCD busy flag
ldata = value; //put the value on the pins
rs = 1; // rs=1 for data
rw = 0; // for write
en = 1; //strobe the enable pin

MSDelay(1);
en = 0; //high low pulse
return;

}

void lcdready()

{

busy = 1; //make the busy pin at input
rs = 0;
rw = 1;
while(busy==1){ //wait here for busy flag
en = 0; //strobe the enable pin
MSDelay(1);
en = 1;

}
void msdelay (unsigned int itime)

{

unsigned int i, j;
for(i=0;i<itime;i++)
for(j=0;j<1275;j++);

}

The above program sends the letters ‘M’, ‘D’, and ‘E’ to the LCD using the busy flag method.

2. Keyboard Interfacing

Keys in keyboards are arranged in a matrix of rows and columns. Controller accesses both rows
and columns through ports. Using two ports we can connect 8x8 matrix key board. When a key
is pressed, a row and column make contact; otherwise there is no contact.

4 x 4 Keyboard:

A 4x4 matrix is connected to two ports.The rows are connected to an output port and the
columns are connected to an input port. Port1 of 8051 is connected to the rows of the key
matrix, hence it acts as an output port. Port 2 of 8051 is connected to the columns of the key
matrix, hence it acts as an input port. The matrix keyboard connection to ports is shown in
Figure 4.

Figure 4. Matrix keyboard connection to ports

Key Scan:

To find out the key pressed, the controller grounds all rows by sending ‘0’ on the port, then it
reads the column data. If the data from column is D3-D0=1111, then no key is pressed. If any
bit of the column is ‘0’, it indicates key is pressed.

Example: 1110 – key pressed in column 0
 1101 – key pressed in column 1
 1011 – key pressed in column 2
 0111 – key pressed in column 3

2.1 Steps to find out key pressed

The following are the steps to find out how the key is pressed in the keyboard

● Beginning with the row 0, the microcontroller grounds it by providing a low to row D0
only.

● It reads the columns(port2). If the data read is all 1s, no key in that row is activated and
the process is moved to the next row.

● It grounds the next row, reads the columns, and checks for any zero.
● This process continues until the row is identified.
● After identification of the row in which the key has been pressed, find out which column

the pressed key belongs to by looking for a zero on it.

Example:

(a) If D3 – D0 = 1101 for the row, D3 – D0 = 1011 for the column, then the key located at

row 1 and column 3, (key 6) is pressed.
(b) If D3 – D0 = 1011 for the row, D3 – D0 = 0111 for the column, then the key located at

row 2 and column 3, (key ‘B’) is pressed.

The Figure 5 shown below gives the interfacing of keyboard with 8051.

Figure 5 Interfacing of Keyboard with 8051.

2.2 Keyboard interfacing program in C

The example 2 given below describes how to read the input from keyboard and send the result
to serial port. For this 9600 baud rate is used.

Example 2

Write a C program to read the keypad and send result to first serial port P1.0 to P1.3 connected
to rows, and P2.0 to P2.3 connected to columns. Configure serial port for 9600 baud, 8 data bits
and one stop bit.

This section described about LCD and keyboard interfacing with 8051.The following section
describes interfacing of 8051 with external ROM.

3.8051 Interfacing with External ROM

The reason for interfacing 8051 with external ROM is that it has a limited amount of on-chip
ROM. Hence for sufficient memory allocation 8051 is interfaced with external ROM. CPU gives
the address of the data required. Decoding circuit has to locate the selected memory block.
Memory chips have CS (chip select) pin, which must be activated for the memory’s contents to
be accessed.

EA pin:

Connect the EA pin to Vcc to indicate that the program code is stored in the microcontroller on-
chip ROM. To indicate that the program code is stored in external ROM, this pin must be
connected to GND. The figure 6 shown below gives the details of 8051 pin diagram.

Figure 6. 8051 Pin Diagram

3.1 Steps to be followed when connecting external memory

The following are the steps to follow when connecting to external memory:

1. CPU data bus is connected directly to the data pins of the memory chip.
2. Control signals RD (read) and WR (memory write) from the CPU are connected to the

OE (output enable) and WE (write enable) pins of the memory chip.
3. The lower bits of the address from the CPU is connected directly to the memory chip of

the address pins.
4. The upper ones are used to activate the CS pin of the memory chip.

P0 and P2 role in providing addresses:

The PC (program counter) of the 8031/51 is 16-bit, it is capable of accessing up to 64K bytes of
program code. 16-bit address is provided by port 0 and port 2 to access external memory. P0
provides the lower 8-bit address A0 – A7 whereas P2 provides the upper 8-bit address A8 –
A15. P0 is also used to provide the 8-bit data bus D0–D7. P0.0 – P0.7 are used for both the
address and data paths (address/data multiplexing), to extract the addresses from the P0 pins.
It will connect to 74LS373 D Latch.

ALE (Address Latch Enable):

ALE (address latch enable) pin is an output pin for 8031/51. If ALE = 0, P0 is used for data path,
whereas if ALE = 1, P0 is used for address path. Separation of address and data can be
obtained by using 74LS373. The Figure 7 shown below gives the specifics about 74LS373 D

latch.

Figure 7. 74LS373 D Latch

The Data, Address, Control Buses for the 8031/8051 are shown in Figure 8 below.

Figure 8. 8051 connections to External program ROM

8051 connection to external data RAM:

8051 connection to external data RAM is shown in Figure 9 below.

Figure 9. 8051 connections to external data RAM

A single ROM for both program and data:

For certain applications we need program ROM, Data ROM and Data RAM in a system. To
allow a single ROM chip to provide both program code space and data code space, we use an
AND gate to signal the OE pin of the ROM chip. The figure 10 shown below gives the details
about connection of 8051 with single ROM for both program and data.

Figure 10. A single ROM for both program and data

3.2 External memory interfacing program in C

 In some applications, we need a large amount of memory to store data. However, the 8051
supports only 64K bytes of external data memory,since DPTR is 16-bit. To solve this problem,
we connect A0 - A15 of the 8051 directly to the external memory’s A0 - A15 pins and use some of
the P1 pin to access this 64K bytes block inside the single 256K X 8 memory chip.

Example 3 shown below describes how to store ASCII letters to external RAM address starting
at 0. It then gets data from external RAM and sends it to PI, one byte at a time.

Example 3:

Example 4 given below describes how to write the C program to read 30 bytes of data from an
external ROM and send it to port P1. An external ROM uses 8051 data space to store the value
in lookup table for the DAC data.

Example 4

Example 5 given below describes how to write the C program to move the message into

external RAM and read the same in RAM and send it to serial port. For this SFR register is used
to declare the new addresses and timer 1 is used for baud rate generation.

Example 5

Example 6 given below describes how to write the C program to access 1KB SRAM of the
DS89C4XO chip. But the ASCII letters are stored before itself in SRAM, for which SBUF register
is used. For this SFR register is used to declare the new addresses and timer 1 is used for baud
rate generation.

Example 6

4. Summary

In this lecture, basics of interfacing of 8051 to external devices are discussed. The
Interfacing of 8051 to external memory has also been discussed. Interfacing of 8051 with
external devices in Embedded C is discussed in detail with examples.

5. References

1. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, “The 8051

Microcontroller and Embedded Systems Using Assembly and C -Second Edition”,

New Delhi(2000).

