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Learning Objectives 

 To introduce prime numbers and their applications in cryptography. 

 To discuss about Euler’s and Fermat’s Theorem. 

 To discuss various examples Euler’s and Fermat’s Theorem. 

 To describe the Chinese remainder theorem and its application. 

 

10.1. Chinese Remainder Theorem 

This theorem has this name because it is a theorem about remainders and was first discovered in 

the 3rd century AD by the Chinese mathematician Sunzi in Sunzi Suanjing. 

 

                                                

 

The Chinese remainder theorem is a theorem of number theory, which states that, if one knows 

the remainders of the division of an integer n by several integers, then one can determine 
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uniquely the remainder of the division of n by the product of these integers, under the condition 

that the divisors are pairwise coprime. 

The Chinese remainder theorem is widely used for computing with large integers, as it allows 

replacing a computation for which one knows a bound on the size of the result by several similar 

computations on small integers. 

 

10.2. Theorem Statement 

 

Let n1, ..., nk be integers greater than 1, which are often called moduli or divisors. Let us denote 

by N the product of the ni. 

The Chinese remainder theorem asserts that if the ni are pairwise coprime, and if a1, ..., ak are 

integers such that 0 ≤ ai < nifor every i, then there is one and only one integer x, such that 0 

≤ x < N and the remainder of the Euclidean division of x by niis ai for every i. 

This may be restated as follows in term of congruences: If the ni are pairwise coprime, and if a1, 

..., ak are any integers, then there exists an integer x such that 

  

and any two such x are congruent modulo N.  

In abstract algebra, the theorem is often restated as: if the ni are pairwise coprime, the map 

  

defines a ring isomorphism[12] 

                         

between the ring of integers modulo N and the direct product of the rings of integers modulo 

the ni. This means that for doing a sequence of arithmetic operations in  one may do the 

same computation independently in each  and then get the result by applying the 

isomorphism (from the right to the left). This may be much faster than the direct computation 
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if Nand the number of operations are large. This is widely used, under the name multi-modular 

computation, for linear algebraover the integers or the rational numbers. 

The theorem can also be restated in the language of combinatorics as the fact that the 

infinite arithmetic progressions of integers form a Helly family.  

 

10.3. CRT – Problem 

 

An old woman goes to market and a horse steps on her basket and crushes the eggs. The rider 

offers to pay for the damages and asks her how many eggs she had brought. She does not 

remember the exact number, but when she had taken them out two at a time, there was one egg 

left. The same happened when she picked them out three, four, five, and six at a time, but when 

she took them seven at a time they came out even. What is the smallest number of eggs she could 

have had? 

This problem can be expressed as a system of congruences  

x≡2(mod3) 

x≡3(mod5) 

x≡2(mod7) 

What does (mod n) mean? 

x ≡  a1 ( mod m1 ) 

The Chinese remainder theorem states the above equations have a unique solution if the moduli 

are relatively  prime. 
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Example:  

The following is an example of a set of equations with different moduli: 

X≡ 2 (mod 3) 

X≡ 3 (mod 5) 

X≡ 2 (mod 7) 

The solution to this set of equations is given in the next section; for the moment, note that the 

answer to this set of equations is x = 23. This value satisfies all equations: 23 ≡ 2 (mod 3), 23 ≡ 3 

(mod 5), and 23 ≡ 2 (mod 7). 

Solution To Chinese Remainder Theorem 

  1. Find M = m1 × m2 × … × mk. This is the common modulus. 

  2. Find M1 = M/m1, M2 = M/m2, …, Mk = M/mk. 

  3. Find the multiplicative inverse of M1, M2, …, Mk using the 

       corresponding moduli (m1, m2, …, mk). Call the inverses 

       M1
−1, M2

−1, …, Mk 
−1. 

  4. The solution to the simultaneous equations is 
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Note that the set of equations can have a solution even if the moduli are not relatively  prime  but 

meet other condition.  However , in cryptography only interested in solving equations with 

coprime moduli.  

Example 

  Find the solution to the simultaneous equations: 

 



 

 

solution 

We follow the four steps. 

X≡ 2 (mod 3) 

X≡ 3 (mod 5) 

X≡ 2 (mod 7) 

 

   1. M = 3 × 5 × 7 = 105 

   2. M1 = 105 / 3 = 35, M2 = 105 / 5 = 21, M3 = 105 / 7 = 15 

   3. The inverses are M1
−1 = 2, M2

−1 = 1, M3 
−1 = 1 

   4. x = (2 × 35 × 2 + 3 × 21 × 1 + 2 × 15 × 1) mod 105 = 23 mod 105 

Solution for Egg Problem 

To solve for x, let M=3⋅5⋅7=105 

M1=35 

M2=21 

M3=15 

Here we see that 2 is an inverse of M1=35 modulo 3 because 35⋅2≡2⋅2≡1(mod3);  

1 is an inverse of M2=21 modulo 5, because 21≡1(mod5);  

and 1 is an inverse of M3=15(mod7), because 15≡1(mod7)  

The solution to this system are those x such that 

x =2⋅35⋅2+3⋅21⋅1+2⋅15⋅1 



 

 

=233≡23(mod105) 

The answer is 23 eggs. 

10.4. The Proof 

Let s and t be positive integers with gcd(s, t) = 1 S and t are therefore coprime  Prove that there exists 

an integer w such that sw == 1 (mod t) 

For each k, let Mi = m/mk where m = m1m2m3…mk  (product of mods) Prove that the greatest 

common denominator of Mi  & mi = 1 Or, that Mi and mi are coprime  

Prove that there is an integer xi such that mi xi == 1(mod mi)  and ai mi xi == ai (mod  mi ) Let x == 

a1m1x1 + a2m2x2 + … + anmnxn  Prove that x == ai (mod mi) 

 

10.5. Application 

In coding theory, detection and correction of errors is done by adding redundancy to data that is sent 

via a noisy channel or in a computer.  

The CRT remainder techniques are useful in developing code that detects errors. 

In cryptography, the CRT is used in secret sharing through error-correcting code.  

The CRT is itself a secret-sharing scheme without any need for modification  

 

Summary 

 

 Outlined the CRT and their applications in cryptography  

 Discussed about the Chinese Remainder Theorem and algorithms 

 Worked with various examples related with Chinese Remainder Theorem 


