
 

 

Module 6 – Lexical Phase -  RE to DFA  

The objective of this module is to construct a minimized DFA from a regular expression. A NFA 
is typically easier to construct but string matching with a NFA is slower. Hence, we go in for a 
DFA representation. However, if the regular expression is converted to a DFA using the 
Thompson’s subset construction algorithm, which was discussed in modules 4 and 5, the 
resultant DFA will have more states than actually necessary. Therefore for string matching, this 
DFA would take more than the optimized DFA that is directly constructed for the language. So, 
in this module, we will discuss the construction of a minimized DFA from a regular expression.  

6.1 Minimized DFA Construction  

 A DFA can be constructed for a language using a direct representation as a directed 
graph, or as a procedure that converts a regular expression to a DFA. The conversion from RE to 
DFA can be done using the following procedure 

• Thompson’s subset construction algorithm – results in a non-minimized DFA and hence 
could be minimized using Table filling algorithm 

• Syntax tree procedure – Results in a minimized DFA  

In this module, the syntax tree procedure that converts a regular expression to a minimized DFA 
is discussed. 

6.2 Syntax Tree Procedure  

The following algorithm, gives the steps to be followed in converting the regular expression 
(RE) to a DFA.  

SyntaxTreeAlgorithm 

Input: Regular Expression 

Output: a Minimized DFA 

1. Augment the regular expression r with a special symbol # which is used as an end marker 
and any transition over # in a DFA will be an accepting. Hence, the new expression is r #. 

2. Construct a syntax tree for r# 

3. Traverse the tree to construct functions nullable( ), firstpos( ), lastpos ( ), and followpos( ) 

4.  Based on the functions firstpos( ), lastpos ( ), and followpos( ) and using the tree, the 
minimized DFA is constructed 

Let us discuss each of these functions in detail before going ahead with the 
implementation of the algorithm:  



 

 

6.2.1 Syntax Tree construction  

Based on the precedence of the regular expression operators “*”, “+” and “.” a syntax tree is 
constructed. The kleene closure operator * has the highest precedence and will have just one 

child. The next precedence is assigned to the concatenation operator “.” and this will have two 
children. The least precedence is given to the union operator “+” and this will also have two 
children. The input symbols and the special symbol “#” will be the leaf nodes of this expression.  

 If “a” and “b” are input symbols and they are connected using the “+” operator then the 
construction of the syntax tree is given in figure 6.1 (a). The syntax tree will be a typical binary 
tree. 

 

 

 

    

Figure 6.1(a) Syntax tree for a+b   Figure 6.1 (b) Syntax tree for a . b 

 If the input symbols are connected by the concatenation operator then the syntax tree 
would be as given in figure 6.1 (b). If the input symbol has a kleene closure operator, then the 
syntax tree would be as given in figure 6.1 (c) 

 

           

                              

 

Figure 6.1(c) Syntax tree for a* 

Using this method and the precedence of operators, a syntax tree for the regular expression r# is 
constructed. All the leaf nodes are labeled with integers from 1 to n, which would be used as the 
information to construct the DFA later. 

6.2.2. Nullable( ) 

After constructing the syntax tree, for every symbol in the syntax tree, the function nullable() is 
defined. The leaf nodes are first assigned nullable based on whether the sub-tree under them can 
generate an empty string ε. Hence, if a leaf node is labeled with “ε” then the nullable information 
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of that node is set to “True” and for all other input alphabet “a” such that “a” is not an operator, 
the nullable information of that node is set to “False”. For the regular expression operators, 
nullable information is assigned. They form the interior node part of the syntax tree. The 
concatenation operator and the union operator cannot generate empty string and hence their 
nullable information depends on the nullable status of its children. The concatenation operator is 
considered as “and” operation while the union operator is considered as “or” operation for 
determining the nullable information of the interior node. If c1 and c2 are the children of these 
interior nodes, then the following relationship is used to calculate the nullable information of the 
interior nodes “+” and “.” 

 nullable (+) = nullable(c1) or nullable(c2)     (6.1) 

 nullable (.) = nullable (c1) and nullable(c2)     (6.2) 

Here the operators “or” and “and” indicates the logical operators. Hence, nullable(+) will be set 
to “True” if any of its children is nullable and nullable(.) will be set to “True” only if both of its 
children are nullable. Since, the kleene closure operator can generate ε as a string, the nullable of 
the * node is set to “True” 

 nullabe(*) = True        (6.3) 

6.2.3 firstpos() 

The function firstpos(n) is defined as the set of positions that can match the first symbol of a 
string generated by the sub-tree at node “n”.  It is defined for all the nodes and depends on the 
firstpos() values of the leaf nodes. 

 To start with, for any input symbol “a”, the firstpos(a) is the integer assigned to it. For the 
node “ε”, firstpos( ) is defined as empty. After assigning the firstpos( ) for all the leaf nodes, 
firstpos() of all interior nodes are computed. To compute this, nullable information of all interior 
and leaf nodes are necessary. For a node labeled with the Kleene closure operator, *, and child c1 
the firstpos() is defined as  

 firstpos(*) =  firstpos(c1)       (6.4) 

For interior nodes labeled with “+” and “.”with children c1 and c2, firstpos() is defined as 
follows: 

 firstpos(+) = firstpos(c1) U firstpos(c2)     (6.5) 

  

firstpos(.) = if (nullable(c1) == true) then 
                                           return (firstpos(c1) ∪ firstpos(c2)) 



 

 

else  
       return firstpos(c1)     (6.6) 

 
This function is computed for all interior and leaf nodes and the result is stored in a list. 
 

6.2.4 lastpos() 

lastpos() is also computed for all the nodes of the syntax tree. lastpos(n) is defined as the set of 
positions that can match the last symbol of a string generated be the subtree at node n.  

To start with, for any input symbol “a”, the lastpos(a) is also the integer assigned to it similar to 
the firstpos(). For the node “ε”, lastpos( ) is defined as empty, since ε which is defined as the 
suffix or prefix of any string is not shown with the string during representation. After assigning 
the lastpos( ) for all the leaf nodes, lastpos() of all interior nodes are computed. To compute this, 
nullable information of all interior and leaf nodes is necessary. For a node labeled with the 
Kleene closure operator, *, and child c1 the lastpos() is defined as  

 lastpos(*) =  lastpos(c1)       (6.7) 

For interior nodes labeled “+” and “.” and with children c1 and c2, lastpos() is defined as 
follows: 

 lastpos(+) = lastpos(c1) U lastpos(c2)     (6.8) 

  

lastpos(.) = if (nullable(c2) == true) then 
                                           return (lastpos(c1) ∪ lastpos(c2)) 

else  
       return lastpos(c2)      (6.9) 

 
The difference between the firstpos() and the lastpos() in only for the sub-tree that involves 

the concatenation operator and for all other nodes, firspos() and lastpos() are same. This function 
is computed for all interior and leaf nodes and the result is stored in a list. 

The summary of all the functions are listed in Table 6.1 
 

 

  

 

 

 



 

 

Table 6.1 Summary of the functions nullable(), firstpos() and lastpos() 

Node n  nullable(n) firstpos(n) lastpos(n) 
Leaf ε  true ∅  ∅  
Leaf i  false {i} {i} 
   + or ( | ) 
   / \ 
c1   c2  

nullable(c1) 
or 
nullable(c2) 

firstpos(c1) 
∪ 
firstpos(c2) 

lastpos(c1) 
∪ 
lastpos(c2) 

     • 
    / \ 
c1   c2 

nullable(c1)  
and 
nullable(c2) 

if nullable(c1) then 
firstpos(c1) ∪ 
firstpos(c2) 
else firstpos(c1) 

if nullable(c2) then 
lastpos(c1) ∪ 
lastpos(c2) 
else lastpos(c2) 

* 
| 
c1 

true firstpos(c1) lastpos(c1) 

 

6.2.5 followpos(n) 

followpos() is computed only for the leaf nodes that are labeled with the input symbols 
that constitute the language of the regular expression. followpos(i) is defined as the set of 
positions that can follow position “i" in the syntax tree. Hence, this is an important function to 
construct the DFA. To compute followpos(i), the firstpost() and the laspos() of all the nodes are 
necessary. The algorithm to compute followpos() is given in algorithm 6.1 

1. for each node n in the tree do 
2.  if n is a concatenation node with left child c1 and right child c2 then 
3.  for each i in lastpos(c1) do 
4.   followpos(i) := followpos(i) ∪ firstpos(c2) 

  end do 
5.  else if n is a *-node 
6.  for each i in lastpos(n) do 
7.   followpos(i) := followpos(i) ∪ firstpos(n) 

  end do   
end if 

 end do 
Algorithm 6.1: Followpos() construction 

From Algorithm 6.1 it is visible that the followpos() is determined for all the leaf nodes based on 
their integers assigned to them. In computation of followpos() the Kleene closure operator node 
and the concatenation operator nodes are only considered. The union operator is not considered 
since the union operator can choose the appropriate path to validate the string.  

Line 1 of the algorithm, considers all the nodes of the syntax tree. In line 2, the node can 
be analysed based on the concatenation operator and line 5 analyses and constructs followpos() 



 

 

based on the Kleene closure operator. In line 3, every element present in lastpos() of the left 
child of the concatenation node is considered and the followpos() value is updated according to 
the relationship given in line 4 of the algorithm. Similarly, line 6 of the algorithm, considers all 
the elements present in the lastpos of the * node and determines their followpos() based on the 
relation given in line 7 of the algorithm. As line 7 involves followpos() of  * node, the 
followpos() of the concatenation operator node is first determined which is then used to identify 
the followpos() of the Kleene closure operator node. 

6.2.6 DFA Construction 

The construction algorithm is given in Algorithm 6.2. Initially, the firstpos (root) is considered. 
The integers representing in this firstpos( ) is considered as one state of the DFA. This is the 
starting state of the DFA. Line 1 and 2 of the algorithm, indicates, this procedure, where the 
variable Dstates is used to remember the states of the DFA. Line 3 initializes a while loop which 
generates new states based on the transition from the initial state. The start state is marked in line 
4 to indicate that the state has been considered. Line 5 initiates for loop to define transitions from 
the start state on all input symbols. The new state will have state numbers which is determined as 
a union of the state numbers of the followpos() of the state numbers in the initiating state. The 
procedure is repeated till there are no more new states can be generated.   

1. s0 := firstpos(root) where root is the root of the syntax tree 
2. Dstates := {s0} and is unmarked 
3. while there is an unmarked state T in Dstates do 
4.  mark T 
5.  for each input symbol a ∈ Σ do 
6.  let U be the set of positions that are in followpos(p) 
7.      for some position p in T, 

a.     such that the symbol at position p is ‘a’  
b.               if U is not empty and not in Dstates then 

  add U as an unmarked state to Dstates 

end if 
        Dtran[T,a] := U 
 end do 
end do 

Algorithm 6.2 – DFA Construction 

 

Example 6.1 : Construct a minimized DFA for the regular expression (a|b)*abb 



 

 

In example 6.1, the regular expression is suffixed with # to form (a|b)*abb#. According to the 
construction algorithm, given in figures 6.1 (a –c), the syntax tree is constructed and is shown in 
figure 6.2  

 
Figure 6.2 Syntax tree construction for (a|b)*abb# 
 

For the syntax tree, the only nullable() node happens to be the * node. Equations 6.1 to 6.3 are 
used to compute the nullable of all the nodes. All the leaf nodes are not nullable. For the other 
interior nodes, the interior concatenation node of children * node and node 3, their nullable 
information is computed as the “.” of its children. Hence, the concatenation node will have 
nullable information set to “False”. Similarly, other interior concatenation nodes will also have 
nullable information set to “False”. 

 

Figure 6.3 Syntax tree with firstpos() and lastpos() marked. 

After computing the nullable information, equations 6.4 to 6.9 are used to compute the firstpos() 
and lastpos() of all the nodes. For the leaf nodes, the numbers indicated will be their firstpos() 



 

 

and lastpos() and is indicated in figure 6.3. Consider, the union operator node of the children “1” 
and “2”. The firstpos( | ) and the laspos( | ) is given by the union of the firstpos and lastpos of its 
children. Hence, it is given by {1,2}. The interior node, “.”, which is a parent of * and (3), the 
firstpos( . ) is computed as union of the firstpos() of its children since c1 being the * node is 
nullable. The computation of firstpos() of all the other interior nodes is computed as firstpos() of 
its left child c1 since, c1 is not nullable for all other interior nodes. On the other hand, the 
lastpos(.) will be computed based on c2. As the right child of all interior node is not nullable, the 
lastpos, is computed as just the lastpos (c2) only.  

Then using this information, followpos() is computed. At the star node, the followpos(1) and 
followpos(2) will be the set {1,2} using line 7 of algorithm 6.1. Consider the parent of the * node 
and we add {3} to the followpos(1) and followpos(2) using line 4 of algorithm 6.1. The 
followpos() of all the nodes is tabulated in Table 6.2 

   Table 6.2 – Followpos() of figure 6.3 

Node  Followpos(n)  
1  {1, 2, 3}  
2  {1,2,3}  
3  {4}  
4  {5}  
5  {6}  
6  Φ  

 

After computing the followpos(), the DFA is constructed by using root’s firstpos() as the start 
state. The root’s firstpos() is {1,2,3} and hence, this set is the start state. In this set, “1” and “3” 
corresponds to the input symbol “a”. Hence, to define the edge from this state on “a”, we need to 
consider the followpos(1) and followpos(3) which is {1,2,3} and {4} respectively. So, we define 
an edge from {1,2,3} to {1,2,3,4} on the input “a”. Similarly, the state “2” corresponds to input 
“b”. Hence, followpos(2) is to be considered for the edge on “b” from {1,2,3} which is the same 
state itself. Now, we have a new state {1,2,3,4}. From this state, “1” and “3” corresponds to “a” 
and hence, there is a self loop on this state on the input symbol “a”. For “b”, nodes 2, 4 
corresponds and hence the union of their followpos() is {1,2,3,5} which is again a new state. The 
process is repeated and the resultant DFA is shown in figure 6.4. The final state corresponds to 
the states in which the number corresponding to # is available. In this example, the state number 
is represented by “6”. In the states of the DFA, “6” is contained in the set representing {1,2,3,6} 
and thus it corresponds to the final state of the DFA. Thus we end up with 4 states in the DFA as 
against 5 states which is the resultant of Thompson’s construction algorithm.  

 



 

 

 

Figure 6.4 Minimized DFA for the expression (a|b)*abb 

Summary 

In this module, we discussed the construction of minimized DFA which is performed from the 
regular expression. This algorithm will be proportional asymptotically to the number of operators 
in the input expression and the number of input symbols present in the regular expression. The 
next module will discuss the minimized DFA construction from the input DFA.  

 


