

Three-Tier Architecture

Three-tier architecture is a client–server software architecture pattern in which the user interface
(presentation), functional process logic ("business rules"), computer data storage and data access are

developed and maintained as independent modules, most often on separate platforms.[3] It was
developed by John J. Donovan in Open Environment Corporation (OEC), a tools company he founded

in Cambridge, Massachusetts.

Apart from the usual advantages of modular software with well-defined interfaces, the three-tier
architecture is intended to allow any of the three tiers to be upgraded or replaced independently in
response to changes in requirements or technology. For example, a change of operating system in the

presentation tier would only affect the user interface code.

Typically, the user interface runs on a desktop PC or workstation and uses a standard graphical user
interface, functional process logic that may consist of one or more separate modules running on a
workstation or application server, and an RDBMS on a database server or mainframe that contains the

computer data storage logic. The middle tier may be multitiered itself (in which case the overall
architecture is called an "n-tier architecture").

Three-tier architecture:

Presentation tier
This is the topmost level of the application. The presentation tier displays information related to

such services as browsing merchandise, purchasing and shopping cart contents. It
communicates with other tiers by which it puts out the results to the browser/client tier and all
other tiers in the network. (In simple terms it is a layer which users can access directly such as a

web page, or an operating systems GUI)
Application tier (business logic, logic tier, or middle tier)

The logical tier is pulled out from the presentation tier and, as its own layer, it controls an

application’s functionality by performing detailed processing.
Data tier

The data tier includes the data persistence mechanisms (database servers, file shares, etc.) and
the data access layer that encapsulates the persistence mechanisms and exposes the data. The
data access layer should provide an API to the application tier that exposes methods of

managing the stored data without exposing or creating dependencies on the data storage
mechanisms. Avoiding dependencies on the storage mechanisms allows for updates or changes

without the application tier clients being affected by or even aware of the change. As with the
separation of any tier, there are costs for implementation and often costs to performance in
exchange for improved scalability and maintainability.

Three-tier architecture is an architectural deployment style that describe the separation of functionality
into layers with each segment being a tier that can be located on a physically separate computer. They
evolved through the component-oriented approach, generally using platform specific methods for

communication instead of a message-based approach.

This architecture has different usages with different applications. It can be used in web applications and
distributed applications. The strength in particular is when using this architecture over distributed
systems. In this course work, I will furthermore invest this through the example of three-tier
architecture in web applications.

https://en.wikipedia.org/wiki/Software_Architecture_styles_and_patterns
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Business_logic_layer
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data_access
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Platform_%28computing%29
https://en.wikipedia.org/wiki/Multitier_architecture#cite_note-3
https://en.wikipedia.org/wiki/John_J._Donovan
https://en.wikipedia.org/wiki/Cambridge,_MA
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Workstation_%28computer_hardware%29
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Application_server
https://en.wikipedia.org/wiki/RDBMS
https://en.wikipedia.org/wiki/Database_server
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Business_logic
https://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Component-based_software_engineering

Structure

Using this architecture the software is divided into 3 different tiers: Presentation tier, Logic tier, and

Data tier. Each tier is developed and maintained as an independent tier

1-Presentation tier

This is the topmost level of the application. The presentation layer provides the application’s user
interface (UI). Typically, this involves the use of Graphical User Interface for smart client interaction,
and Web based technologies for browser-based interaction. The presentation tier displays information
related to such services as browsing merchandise, purchasing, and shopping cart contents. It

communicates with other tiers by outputting results to the browser/client tier and all other tiers in the
network.

2-Logic tier (called also business logic, data access tier, or middle tier)

The logic tier is pulled out from the presentation tier and, as its own layer; it controls an application’s
functionality by performing detailed processing. Logic tier is where mission-critical business problems
are solved. The components that make up this layer can exist on a server machine, to assist in resource

sharing. These components can be used to enforce business rules, such as business a lgorithms and legal
or governmental regulations, and data rules, which are designed to keep the data structures consistent

within either specific or multiple databases. Because these middle-tier components are not tied to a
specific client, they can be used by all applications and can be moved to different locations, as response
time and other rules require. For example, simple edits can be placed on the client side to minimize

network round-trips, or data rules can be placed in stored procedures.

3-Data tier

This tier consists of database servers, is the actual DBMS access layer. It can be accessed through the
business services layer and on occasion by the user services layer. Here information is stored and
retrieved. This tier keeps data neutral and independent from application servers or business logic.
Giving data its own tier also improves scalability and performance. This layer consists of data access

components (rather than raw DBMS connections) to aid in resource sharing and to allow clients to be
configured without installing the DBMS libraries and ODBC drivers on each client. An example would

be a computer hosting a database management system (DBMS), such as a Microsoft SQL Server
database.

Components Interconnections

3 tier application architecture is characterized by the functional decomposition of applications, service
components, and their distributed deployment, providing improved scalability, availability,
manageability, and resource utilization. During an application’s life cycle, the three-tier approach

provides benefits such as reusability, flexibility, manageability, maintainability, and scalability. Each
tier is completely independent from all other tiers, except for those immediately above and below it.

You can share and reuse the components and services you create, and you can distribute them across a
network of computers as needed. You can divide large and complex projects into simpler projects and
assign them to different programmers or programming teams. You can also deploy components and

services on a server to help keep up with changes, and you can redeploy them as growth of the
application’s user base, data, and transaction volume increases.

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Database_management_system
http://www.microsoft.com/sqlserver

Logic layer is moved outside the presentation layer and into the business layer as it enhances reuse. As
applications grow, applications often grow into other realms. Applications may start out as a web
application, but some of the functionality may later be moved to a smart client application. Portions of

an application may be split between a web site and a web or windows service that runs on a server. In
addition, keeping logic helps aid in developing a good design (sometimes code can get sloppier in the

UI).

The main benefits of the 3-tier architectural style are:

 Maintainability. Because each tier is independent of the other tiers, updates or changes can be
carried out without affecting the application as a whole.

 Scalability. Because tiers are based on the deployment of layers, scaling out an application is
reasonably straightforward.

 Flexibility. Because each tier can be managed or scaled independently, flexibility is increased.

 Availability. Applications can exploit the modular architecture of enabling systems using easily
scalable components, which increases availability.

Consider the 3-tier architectural style if the processing requirements of the layers in the app lication
differ such that processing in one layer could absorb sufficient resources to slow the processing in other
layers, or if the security requirements of the layers in the application differ. For example, the
presentation layer should not store sensitive data, while this may be stored in the business and data

layers. The 3-tier architectural style is also appropriate if you want to be able to share business logic
between applications, and you have sufficient hardware to allocate the required number of servers to

each tier.

Thin Client

A thin client is designed to be especially small so that the bulk of the data processing occurs on the
server. Although the term thin client often refers to software, it is increasingly used for the computers,
such as network computers and Net PCs, that are designed to serve as the clients for client/server

architectures. A thin client is a network computer without a hard disk drive. They act as a simple
terminal to the server and require constant communication with the server as well.

Thin clients provide a desktop experience in environments where the end user has a well-defined and
regular number of tasks for which the system is used. Thin clients can be found in medical offices,

airline ticketing, schools, governments, manufacturing plants and even call centers. Along with being
easy to install, thin clients also offer a lower total cost of ownership over thick clients.

Thick Clients

In contrast, a thick client (also called a fat client) is one that will perform the bulk of the processing in
client/server applications. With thick clients, there is no need for continuous server communications as
it is mainly communicating archival storage information to the server. As in the case of a thin client,

the term is often used to refer to software, but again is also used to describe the networked computer
itself. If your applications require multimedia components or that are bandwidth intensive, you'll also

want to consider going with thick clients. One of the biggest advantages of thick clients rests in the
nature of some operating systems and software being unable to run on thin clients. Thick clients can
handle these as it has its own resources.

Thick vs. Thin - A Quick Comparison

Thin Clients Thick Clients

- Easy to deploy as they require no extra or
specialized software installation

- Needs to validate with the server after data capture

- If the server goes down, data collection is halted as
the client needs constant communication with the

server

- Cannot be interfaced with other equipment (in
plants or factory settings for example)

- Clients run only and exactly as specified by the
server

- More downtime

-Portability in that all applications are on the server
so any workstation can access

- Opportunity to use older, outdated PCs as clients

- More expensive to deploy and more work for IT
to deploy

- Data verified by client not server (immediate
validation)

- Robust technology provides better uptime

 - Only needs intermittent communication with

server

- More expensive to deploy and more work for IT
to deploy

- Require more resources but less servers

- Can store local files and applications

- Reduced server demands

- Increased security issues

http://www.webopedia.com/TERM/T/thin_client.html

- Reduced security threat

Benefits of client/server architecture:

Benefits of the Oracle client/server architecture in a distributed processing environment include the
following:

 Client applications are not responsible for performing any data processing. Client applicatio ns
can concentrate on requesting input from users, requesting desired data from the server, and
then analyzing and presenting this data using the display capabilities of the client workstation or

the terminal (for example, using graphics or spreadsheets).

 Client applications can be designed with no dependence on the physical location of the data. If
the data is moved or distributed to other database servers, the application continues to function
with little or no modification.

 Oracle exploits the multitasking and shared-memory facilities of its underlying operating
system. As a result, it delivers the highest possible degree of concurrency, data integrity, and

performance to its client applications.

 Client workstations or terminals can be optimized for the presentation of data (for example, by
providing graphics and mouse support) and the server can be optimized for the processing and
storage of data (for example, by having large amounts of memory and disk space).

 If necessary, Oracle can be scaled. As your system grows, you can add multiple servers to
distribute the database processing load throughout the network (horizontally scaled).

Alternatively, you can replace Oracle on a less powerful computer, such as a microcomputer,
with Oracle running on a minicomputer or mainframe, to take advantage of a larger system's

performance (vertically scaled). In either case, all data and applications are maintained with
little or no modification, since Oracle is portable between systems.

 In networked environments, shared data is stored on the servers, rather than on all computers in
the system. This makes it easier and more efficient to manage concurrent access.

 In networked environments, inexpensive, low-end client workstations can be used to access the
remote data of the server effectively.

 In networked environments, client applications submit database requests to the server using
SQL statements. Once received, the SQL statement is processed by the server, and the results

are returned to the client application. Network traffic is kept to a minimum because only the
requests and the results are shipped over the network.

Client-Server Security Overview

When configuring the security for a Sun Ray environment, you should evaluate the security
requirements. You can choose one of the following security policies between the Sun Ray server and

clients:

 Enable encryption for upstream traffic only (client to server)

 Enable encryption for downstream traffic only (server to client)

 Enable bidirectional encryption

 Enable server authentication

 Disable client authentication

Additionally, you must decide whether to enable hard security mode for encryption and client
authentication.

You can use the utcrypto command or the Admin GUI to configure the encryption option,
authentication option, and security mode.

Encryption and Authentication

By default, data packets between the Sun Ray server and client are sent "in the clear." This policy
means that outsiders can easily "snoop" the traffic and recover vital and private user information, which
malicious users might misuse. To avoid this type of attack, Sun Ray Software administrators can enable

traffic encryption through the ARCFOUR encryption algorithm.

The ARCFOUR encryption algorithm, selected for its speed and relatively low CPU overhead, supports
a higher level (128-bit) of security between Sun Ray services and clients.

However, encryption alone does not provide complete security. Spoofing a Sun Ray server or a Sun
Ray Client and posing as either is still possible, if not necessarily easy. Here are some examples:

 A man-in-the-middle attack, in which an impostor claims to be the Sun Ray server for the
clients and pretends to be the client for the server. The imposter then intercepts all messages
and has access to all secure data.

 Manipulating a client to pretend to be another client in order to gain access to sessions
connected to the spoofed client.

Server and client authentication provided by Sun Ray Software can resolve these types of attacks.

Server authentication uses a single pre-configured, public-private key pair in the Sun Ray Software and
firmware, and client authentication uses an automatically generated public-private key pair in every
client.

Sun Ray Software uses the Digital Signature Algorithm (DSA) to verify that clients are communicating
with a valid Sun Ray server and that the server is communicating with a legitimate client. This

authentication scheme is not completely foolproof, but it mitigates trivial man- in-the-middle attacks
and makes spoofing Sun Ray servers or Sun Ray Clients harder for attackers.

Enabling encryption and authentication is optional. The system or network administrator can configure
it based on site requirements. By default only client authentication is enabled.

Problems of Parallel Processing

Effective implementation of parallel processing involves two challenges:

 structuring tasks so that certain tasks can execute at the same time (in parallel)

 preserving the sequencing of tasks which must be executed serially

Characteristics of a Parallel System

A parallel processing system has the following characteristics:

 Each processor in a system can perform tasks concurrently.

 Tasks may need to be synchronized.

 Nodes usually share resources, such as data, disks, and other devices.

Parallel Processing for SMPs and MPPs

Parallel processing architectures may support:

 clustered and massively parallel processing (MPP) hardware, in which each node has its own
memory

 single memory systems-also known as symmetric multiprocessing (SMP) hardware, in which
multiple processors use one memory resource

Clustered and MPP machines have multiple memories, with each CPU typically having its own
memory. Such systems promise significant price/performance benefits by using commodity memory
and bus components to eliminate memory bottlenecks.

Database management systems that support only one type of hardware limit the portability of

applications, the potential to migrate applications to new hardware systems, and the scalability of
applications. Oracle Parallel Server (OPS) exploits both clusters and MPP systems, and has no such
limitations. Oracle without the Parallel Server Option exploits single CPU or SMP machines.

Parallel Processing for Integrated Operations

Parallel database software must effectively deploy the system's processing power to handle diverse
applications: online transaction processing (OLTP) applications, decision support system (DSS)

applications, as well as a mixed OLTP and DSS workload. OLTP applications are characterized by
short transactions which have low CPU and I/O usage. DSS applications are characterized by long
transactions, with high CPU and I/O usage.

Parallel database software is often specialized-usually to serve as query processors. Since they are

designed to serve a single function, however, specialized servers do not provide a common foundation
for integrated operations. These include online decision support, batch reporting, data warehousing,
OLTP, distributed operations, and high availability systems. Specialized servers ha ve been used most

successfully in the area of very large databases: in DSS applications, for example.

Versatile parallel database software should offer excellent price/performance on open systems
hardware, and be designed to serve a wide variety of enterp rise computing needs. Features such as
online backup, data replication, portability, interoperability, and support for a wide variety of client

tools can enable a parallel server to support application integration, distributed operations, and mixed
application workloads.

Higher Performance

With more CPUs available to an application, higher speedup and scaleup can be attained. The

improvement in performance depends on the degree of inter-node locking and synchronization
activities. Each lock operation is processor and message intensive; there can be a lot of latency. The
volume of lock operations and database contention, as well as the throughput and performance of the

IDLM, ultimately determine the scalability of the system.

Higher Availability

Nodes are isolated from each other, so a failure at one node does not bring the whole system down. The
remaining nodes can recover the failed node and continue to provide data access to users. This means
that data is much more available than it would be with a single node upon node failure, and amounts to
significantly higher availability of the database.

Greater Flexibility

An Oracle Parallel Server environment is extremely flexible. Instances can be allocated or deallocated
as necessary. When there is high demand for the database, more instances can be temporarily allocated.

The instances can be deallocated and used for other purposes once they are no longer necessary.

More Users

Parallel database technology can make it possible to overcome memory limits, enabling a single system
to serve thousands of users.

